咨询与建议

限定检索结果

文献类型

  • 38 篇 期刊文献
  • 9 篇 会议

馆藏范围

  • 47 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 30 篇 工学
    • 22 篇 计算机科学与技术...
    • 20 篇 软件工程
    • 9 篇 生物工程
    • 6 篇 信息与通信工程
    • 4 篇 控制科学与工程
    • 4 篇 生物医学工程(可授...
    • 3 篇 光学工程
    • 2 篇 化学工程与技术
    • 1 篇 力学(可授工学、理...
    • 1 篇 建筑学
    • 1 篇 土木工程
    • 1 篇 测绘科学与技术
    • 1 篇 环境科学与工程(可...
    • 1 篇 网络空间安全
  • 28 篇 理学
    • 19 篇 数学
    • 10 篇 生物学
    • 10 篇 统计学(可授理学、...
    • 5 篇 物理学
    • 3 篇 化学
    • 2 篇 大气科学
    • 1 篇 地球物理学
    • 1 篇 系统科学
  • 12 篇 管理学
    • 7 篇 图书情报与档案管...
    • 5 篇 管理科学与工程(可...
    • 2 篇 工商管理

主题

  • 3 篇 machine learning
  • 3 篇 convolutional ne...
  • 2 篇 deep neural netw...
  • 2 篇 neural networks
  • 2 篇 convolution
  • 2 篇 benchmarking
  • 2 篇 image classifica...
  • 2 篇 aerosols
  • 2 篇 training
  • 1 篇 extrapolation
  • 1 篇 analysis
  • 1 篇 eigenvalues and ...
  • 1 篇 parallelization
  • 1 篇 scalability
  • 1 篇 productivity
  • 1 篇 head
  • 1 篇 deep-learning
  • 1 篇 database systems
  • 1 篇 phase space meth...
  • 1 篇 magnetic resonan...

机构

  • 9 篇 competence cente...
  • 9 篇 institute for ma...
  • 7 篇 fraunhofer cente...
  • 4 篇 faculty of mathe...
  • 3 篇 department of in...
  • 3 篇 fraunhofer mevis...
  • 3 篇 department of co...
  • 3 篇 centre for biome...
  • 3 篇 diagnostic image...
  • 3 篇 data and web sci...
  • 3 篇 iwr university o...
  • 2 篇 university of sc...
  • 2 篇 universitat autò...
  • 2 篇 cibm center for ...
  • 2 篇 dementia researc...
  • 2 篇 department of nu...
  • 2 篇 department of co...
  • 2 篇 universidad pomp...
  • 2 篇 department of ne...
  • 2 篇 faculty of physi...

作者

  • 9 篇 keuper janis
  • 4 篇 harder paula
  • 4 篇 janis keuper
  • 3 篇 pfreundt franz-j...
  • 3 篇 gauger nicolas r...
  • 3 篇 watson-parris du...
  • 3 篇 keuper margret
  • 3 篇 wolter moritz
  • 3 篇 franz-josef pfre...
  • 2 篇 volkmann eric
  • 2 篇 hamaekers jan
  • 2 篇 kodamullil alpha...
  • 2 篇 domingo-fernánde...
  • 2 篇 heese raoul
  • 2 篇 nicolas r. gauge...
  • 2 篇 griebel michael
  • 2 篇 stier philip
  • 2 篇 strassel dominik
  • 2 篇 bohn bastian
  • 2 篇 chatzimichailidi...

语言

  • 42 篇 英文
  • 5 篇 其他
检索条件"机构=Fraunhofer Center Machine Learning Scientific Computing"
47 条 记 录,以下是11-20 订阅
排序:
Wavelet-Packets for Deepfake Image Analysis and Detection
arXiv
收藏 引用
arXiv 2021年
作者: Wolter, Moritz Blanke, Felix Heese, Raoul Garcke, Jochen High Performance Computing & Analytics Lab Universität Bonn Germany Fraunhofer SCAI University of Bonn Germany Fraunhofer Center for Machine Learning Fraunhofer ITWM Germany Institute for Numerical Simulation University of Bonn Germany Fraunhofer Center for Machine Learning Fraunhofer SCAI Germany
As neural networks become able to generate realistic artificial images, they have the potential to improve movies, music, video games and make the internet an even more creative and inspiring place. Yet, the latest te... 详细信息
来源: 评论
CONSTRAINED CONSENSUS-BASED OPTIMIZATION AND NUMERICAL HEURISTICS FOR THE FEW PARTICLE REGIME
arXiv
收藏 引用
arXiv 2024年
作者: Beddrich, Jonas Chenchene, Enis Fornasier, Massimo Huang, Hui Wohlmuth, Barbara Faculty of Mathematics University of Vienna Austria Department of Mathematics Munich Data Science Institute Technical University of Munich Garching by Munich & Munich Center for Machine Learning Munich Germany Department of Mathematics and Scientific Computing University of Graz Austria Department of Mathematics Technical University of Munich Garching by Munich Germany
Consensus-based optimization (CBO) is a versatile multi-particle optimization method for performing nonconvex and nonsmooth global optimizations in high dimensions. Proofs of global convergence in probability have bee... 详细信息
来源: 评论
Similarity of particle systems using an invariant root mean square deviation measure
arXiv
收藏 引用
arXiv 2021年
作者: Bulin, Johannes Hamaekers, Jan Department of Virtual Material Design Fraunhofer Institute for Algorithms and Scientific Computing Schloss Birlinghoven Sankt Augustin53757 Germany Fraunhofer Center for Machine Learning Schloss Birlinghoven Sankt Augustin53757 Germany
Determining whether two particle systems are similar is a common problem in particle simulations. When the comparison should be invariant under permutations, orthogonal transformations, and translations of the systems... 详细信息
来源: 评论
FrequencyLowCut Pooling - Plug & Play against Catastrophic Overfitting
arXiv
收藏 引用
arXiv 2022年
作者: Grabinski, Julia Jung, Steffen Keuper, Janis Keuper, Margret Visual Computing Siegen University Germany Competence Center High Performance Computing Fraunhofer ITWM Kaiserslautern Germany Institute for Machine Learning and Analytics Offenburg University Germany Max Planck Institute for Informatics Saarland Informatics Campus Germany
Over the last years, Convolutional Neural Networks (CNNs) have been the dominating neural architecture in a wide range of computer vision tasks. From an image and signal processing point of view, this success might be... 详细信息
来源: 评论
Improving generative model-based unfolding with Schrödinger bridges
收藏 引用
Physical Review D 2024年 第7期109卷 076011-076011页
作者: Sascha Diefenbacher Guan-Horng Liu Vinicius Mikuni Benjamin Nachman Weili Nie Physics Division Lawrence Berkeley National Laboratory Berkeley California 94720 USA Autonomous Control and Decision Systems Laboratory Georgia Institute of Technology Atlanta Georgia 30332 USA National Energy Research Scientific Computing Center Berkeley Lab Berkeley California 94720 USA Berkeley Institute for Data Science University of California Berkeley California 94720 USA Machine Learning Research Group NVIDIA Research
machine learning-based unfolding has enabled unbinned and high-dimensional differential cross section measurements. Two main approaches have emerged in this research area; one based on discriminative models and one ba... 详细信息
来源: 评论
Scalable hyperparameter optimization with lazy Gaussian processes
arXiv
收藏 引用
arXiv 2020年
作者: Ram, Raju Müller, Sabine Pfreundt, Franz-Josef Gauger, Nicolas R. Keuper, Janis Competence Center High Performance Computing Fraunhofer ITWM Kaiserslautern Germany Fraunhofer Center Machine Learning Germany Scientific Computing Group TU Kaiserslautern Germany Institute for Machine Learning and Analytics Offenburg University Germany
Most machine learning methods require careful selection of hyper-parameters in order to train a high performing model with good generalization abilities. Hence, several automatic selection algorithms have been introdu... 详细信息
来源: 评论
SpectralDefense: Detecting Adversarial Attacks on CNNs in the Fourier Domain
arXiv
收藏 引用
arXiv 2021年
作者: Harder, Paula Pfreundt, Franz-Josef Keuper, Margret Keuper, Janis Competence Center High Performance Computing Fraunhofer ITWM Kaiserslautern Germany Scientic Computing University of Kaiserslautern Kaiserlautern Germany Fraunhofer Center Machine Learning Germany Data and Web Science Group University of Mannheim Germany Offenburg University Germany
—Despite the success of convolutional neural networks (CNNs) in many computer vision and image analysis tasks, they remain vulnerable against so-called adversarial attacks: Small, crafted perturbations in the input i... 详细信息
来源: 评论
A scalable generative model for dynamical system reconstruction from neuroimaging data
arXiv
收藏 引用
arXiv 2024年
作者: Volkmann, Eric Brändle, Alena Durstewitz, Daniel Koppe, Georgia Medical Faculty Mannheim Heidelberg University Mannheim Germany Institute for Machine Learning Johannes Kepler University Linz Austria Interdisciplinary Center for Scientific Computing Heidelberg University Heidelberg Germany Faculty of Physics and Astronomy Heidelberg University Heidelberg Germany Hector Institute for AI in Psychiatry Dept. for Psychiatry and Psychotherapy CIMH Germany Faculty of Mathematics and Computer Science Heidelberg University Heidelberg Germany
Data-driven inference of the generative dynamics underlying a set of observed time series is of growing interest in machine learning and the natural sciences. In neuroscience, such methods promise to alleviate the nee... 详细信息
来源: 评论
Deep neural networks and PIDE discretizations
arXiv
收藏 引用
arXiv 2021年
作者: Bohn, Bastian Griebel, Michael Kannan, Dinesh Fraunhofer Center for Machine Learning Schloss Birlinghoven Sankt Augustin53754 Germany Fraunhofer Institute for Algorithms and Scientific Computing SCAI Schloss Birlinghoven Sankt Augustin53754 Germany Institute for Numerical Simulation University of Bonn Friedrich-Hirzebruch-Allee 7 Bonn53115 Germany
In this paper, we propose neural networks that tackle the problems of stability and field-of-view of a Convolutional Neural Network (CNN). As an alternative to increasing the network's depth or width to improve pe... 详细信息
来源: 评论
Combating mode collapse in GAN training: An empirical analysis using hessian eigenvalues
arXiv
收藏 引用
arXiv 2020年
作者: Lopez, Ricard Durall Chatzimichailidis, Avraam Labus, Peter Keuper, Janis Fraunhofer ITWM Germany IWR University of Heidelberg Germany Chair for Scientific Computing TU Kaiserslautern Germany Fraunhofer Center Machine Learning Germany Institute for Machine Learning and Analytics Offenburg University Germany
Generative adversarial networks (GANs) provide state-of-the-art results in image generation. However, despite being so powerful, they still remain very challenging to train. This is in particular caused by their highl... 详细信息
来源: 评论