咨询与建议

限定检索结果

文献类型

  • 168 篇 期刊文献
  • 141 篇 会议
  • 1 册 图书

馆藏范围

  • 310 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 207 篇 工学
    • 159 篇 计算机科学与技术...
    • 131 篇 软件工程
    • 43 篇 生物工程
    • 36 篇 信息与通信工程
    • 25 篇 光学工程
    • 24 篇 控制科学与工程
    • 11 篇 机械工程
    • 11 篇 电气工程
    • 11 篇 安全科学与工程
    • 10 篇 交通运输工程
    • 9 篇 生物医学工程(可授...
    • 6 篇 电子科学与技术(可...
    • 6 篇 化学工程与技术
    • 5 篇 动力工程及工程热...
    • 5 篇 建筑学
    • 4 篇 材料科学与工程(可...
  • 132 篇 理学
    • 81 篇 数学
    • 46 篇 生物学
    • 44 篇 统计学(可授理学、...
    • 26 篇 物理学
    • 14 篇 系统科学
    • 7 篇 化学
    • 5 篇 地球物理学
  • 58 篇 管理学
    • 31 篇 图书情报与档案管...
    • 27 篇 管理科学与工程(可...
    • 10 篇 工商管理
  • 12 篇 医学
    • 11 篇 临床医学
    • 7 篇 基础医学(可授医学...
    • 5 篇 药学(可授医学、理...
  • 6 篇 法学
    • 6 篇 社会学
  • 3 篇 农学
  • 2 篇 经济学
  • 2 篇 教育学
  • 1 篇 哲学
  • 1 篇 文学

主题

  • 24 篇 machine learning
  • 11 篇 task analysis
  • 11 篇 semantics
  • 10 篇 training
  • 8 篇 neural networks
  • 8 篇 convolution
  • 7 篇 object detection
  • 7 篇 deep neural netw...
  • 7 篇 three-dimensiona...
  • 6 篇 generative adver...
  • 6 篇 predictive model...
  • 6 篇 computer vision
  • 5 篇 semantic segment...
  • 5 篇 pattern recognit...
  • 4 篇 conferences
  • 4 篇 deep learning
  • 4 篇 image segmentati...
  • 4 篇 adversarial mach...
  • 4 篇 correlation
  • 4 篇 laser radar

机构

  • 59 篇 fraunhofer cente...
  • 20 篇 fraunhofer cente...
  • 19 篇 fraunhofer iosb
  • 17 篇 fraunhofer iais
  • 17 篇 karlsruhe instit...
  • 16 篇 institute for ma...
  • 13 篇 fraunhofer itwm
  • 12 篇 fraunhofer cente...
  • 11 篇 fraunhofer iosb ...
  • 10 篇 fraunhofer iais ...
  • 10 篇 fraunhofer ctr m...
  • 9 篇 fraunhofer insti...
  • 9 篇 univ bonn inst n...
  • 9 篇 competence cente...
  • 9 篇 iwr university o...
  • 7 篇 vision and fusio...
  • 7 篇 b-it university ...
  • 6 篇 fraunhofer insti...
  • 6 篇 competence cente...
  • 6 篇 fraunhofer cente...

作者

  • 24 篇 keuper janis
  • 22 篇 beyerer jürgen
  • 21 篇 garcke jochen
  • 18 篇 jürgen beyerer
  • 17 篇 bauckhage christ...
  • 14 篇 arens michael
  • 13 篇 pfreundt franz-j...
  • 13 篇 wirtz tim
  • 12 篇 wrobel stefan
  • 12 篇 wolter moritz
  • 10 篇 heese raoul
  • 10 篇 houben sebastian
  • 9 篇 bayer jens
  • 9 篇 sifa rafet
  • 9 篇 keuper margret
  • 9 篇 becker stefan
  • 8 篇 sicking joachim
  • 8 篇 münch david
  • 8 篇 durall ricard
  • 8 篇 christian bauckh...

语言

  • 272 篇 英文
  • 38 篇 其他
  • 1 篇 德文
检索条件"机构=Fraunhofer Center for Machine Learning and Fraunhofer SCAI"
310 条 记 录,以下是41-50 订阅
排序:
A Simple Heuristic for the Graph Tukey Depth Problem with Potential Applications to Graph Mining
A Simple Heuristic for the Graph Tukey Depth Problem with Po...
收藏 引用
2022 learning, Knowledge, Data, Analysis, LWDA 2022 - Workshops: Special Interest Group on Knowledge Management (FGWM), Knowledge Discovery, Data Mining, and machine learning (FGKD) and Special Interest Group on Database Systems (FGDB)
作者: Seiffarth, Florian Horváth, Tamás Wrobel, Stefan Dept. of Computer Science University of Bonn Bonn Germany Fraunhofer IAIS Schloss Birlinghoven Sankt Augustin Germany Fraunhofer Center for Machine Learning Sankt Augustin Germany
We study a recently introduced adaptation of Tukey depth to graphs and discuss its algorithmic properties and potential applications to mining and learning with graphs. In particular, since it is NP-hard to compute th... 详细信息
来源: 评论
Anomaly detection of wind turbine time series using Variational Recurrent Autoencoders
arXiv
收藏 引用
arXiv 2021年
作者: Preciado-Grijalva, Alan Iza-Teran, Victor Rodrigo Hochschule Bonn-Rhein-Sieg Fraunhofer Center for Machine Learning SCAI Fraunhofer Center for Machine Learning SCAI
Ice accumulation in the blades of wind turbines can cause them to describe anomalous rotations or no rotations at all, thus affecting the generation of electricity and power output. In this work, we investigate the pr... 详细信息
来源: 评论
Clark-Park Transformation based Autoencoder for 3-Phase Electrical Signals
Clark-Park Transformation based Autoencoder for 3-Phase Elec...
收藏 引用
IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT Europe)
作者: André Kummerow Mansour Alramlawi Mohammad Dirbas Steffen Nicolai Peter Bretschneider Cognitive Energy Systems Fraunhofer IOSB IOSB-AST Fraunhofer Center for Machine Learning Ilmenau Germany
During the past decades, significant progress has been made in the field of artificial neural networks to process images (Convolutional Neural Networks), audio signals (Temporal Convolutional Networks), or textual inf...
来源: 评论
Evaluation of Interpretable Association Rule Mining Methods on Time-Series in the Maritime Domain  25th
Evaluation of Interpretable Association Rule Mining Methods ...
收藏 引用
25th International Conference on Pattern Recognition Workshops, ICPR 2020
作者: Veerappa, Manjunatha Anneken, Mathias Burkart, Nadia Fraunhofer IOSB Fraunhofer Str. 1 Karlsruhe76131 Germany Fraunhofer Center for Machine Learning Karlsruhe Germany
In decision critical domains, the results generated by black box models such as state of the art deep learning based classifiers raise questions regarding their explainability. In order to ensure the trust of operator... 详细信息
来源: 评论
Visual Prompting for Adversarial Robustness
Visual Prompting for Adversarial Robustness
收藏 引用
International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
作者: Aochuan Chen Peter Lorenz Yuguang Yao Pin-Yu Chen Sijia Liu Michigan State University USA Fraunhofer ITWM and Fraunhofer Center of Machine Learning Germany IBM Research USA
In this work, we leverage visual prompting (VP) to improve adversarial robustness of a fixed, pre-trained model at test time. Compared to conventional adversarial defenses, VP allows us to design universal (i.e., data... 详细信息
来源: 评论
Security Fence Inspection at Airports Using Object Detection
Security Fence Inspection at Airports Using Object Detection
收藏 引用
IEEE Winter Applications and Computer Vision Workshops (WACVW)
作者: Nils Friederich Andreas Specker Jürgen Beyerer Karlsruhe Institute of Technology Institute for Automation and Applied Informatics Fraunhofer IOSB Fraunhofer Center for Machine Learning Karlsruhe Institute of Technology Institute for Anthropomatics and Robotics
To ensure the security of airports, it is essential to protect the airside from unauthorized access. For this pur-pose, security fences are commonly used, but they require regular inspection to detect damages. However...
来源: 评论
Knowledge-Distillation-Based Label Smoothing for Fine-Grained Open-Set Vehicle Recognition
Knowledge-Distillation-Based Label Smoothing for Fine-Graine...
收藏 引用
IEEE Winter Applications and Computer Vision Workshops (WACVW)
作者: Stefan Wolf Dennis Loran Jürgen Beyerer Vision and Fusion Lab (IES) Karlsruhe Institute of Technology Karlsruhe Germany Fraunhofer IOSB Karlsruhe Germany Fraunhofer Center for Machine Learning Munich Germany
Fine-grained vehicle classification describes the task of estimating the make and the model of a vehicle based on an image. It provides a useful tool for security authorities to find suspects in surveillance cameras. ...
来源: 评论
Bézier Curve Gaussian Processes
arXiv
收藏 引用
arXiv 2022年
作者: Hug, Ronny Becker, Stefan Hübner, Wolfgang Arens, Michael Beyerer, Jürgen Fraunhofer IOSB and Fraunhofer Center for Machine Learning Germany Germany
Probabilistic models for sequential data are the basis for a variety of applications concerned with processing timely ordered information. The predominant approach in this domain is given by recurrent neural networks,... 详细信息
来源: 评论
Position: A Call to Action for a Human-centered AutoML Paradigm  41
Position: A Call to Action for a Human-Centered AutoML Parad...
收藏 引用
41st International Conference on machine learning, ICML 2024
作者: Lindauer, Marius Karl, Florian Klier, Anne Moosbauer, Julia Tornede, Alexander Mueller, Andreas Hutter, Frank Feurer, Matthias Bischl, Bernd Leibniz University Hannover Germany L3S Research Center Hannover Germany Fraunhofer Institute for Integrated Circuits IIS Fraunhofer IIS Nuremberg Germany Ludwig-Maximilians-Universität München Munich Germany Munich Center for Machine Learning Munich Germany Microsoft Redmond United States Albert-Ludwigs-Universität Freiburg Freiburg Germany
Automated machine learning (AutoML) was formed around the fundamental objectives of automatically and efficiently configuring machine learning (ML) workflows, aiding the research of new ML algorithms, and contributing... 详细信息
来源: 评论
A Quantitative Human-Grounded Evaluation Process for Explainable machine learning
A Quantitative Human-Grounded Evaluation Process for Explain...
收藏 引用
2022 learning, Knowledge, Data, Analysis, LWDA 2022 - Workshops: Special Interest Group on Knowledge Management (FGWM), Knowledge Discovery, Data Mining, and machine learning (FGKD) and Special Interest Group on Database Systems (FGDB)
作者: Beckh, Katharina Müller, Sebastian Rüping, Stefan Fraunhofer IAIS Germany University of Bonn Germany ML2R - Competence Center Machine Learning Rhein-Ruhr Germany
Methods from explainable machine learning are increasingly applied. However, evaluation of these methods is often anecdotal and not systematic. Prior work has identified properties of explanation quality and we argue ... 详细信息
来源: 评论