咨询与建议

限定检索结果

文献类型

  • 32 篇 期刊文献
  • 5 篇 会议
  • 1 册 图书

馆藏范围

  • 38 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 19 篇 工学
    • 15 篇 计算机科学与技术...
    • 13 篇 软件工程
    • 6 篇 生物工程
    • 2 篇 信息与通信工程
    • 2 篇 控制科学与工程
    • 2 篇 化学工程与技术
    • 1 篇 力学(可授工学、理...
    • 1 篇 机械工程
    • 1 篇 光学工程
    • 1 篇 动力工程及工程热...
    • 1 篇 电气工程
    • 1 篇 农业工程
    • 1 篇 环境科学与工程(可...
    • 1 篇 生物医学工程(可授...
  • 17 篇 理学
    • 9 篇 数学
    • 8 篇 生物学
    • 6 篇 统计学(可授理学、...
    • 2 篇 物理学
    • 2 篇 化学
    • 1 篇 天文学
    • 1 篇 大气科学
    • 1 篇 地球物理学
    • 1 篇 地质学
  • 11 篇 医学
    • 9 篇 临床医学
    • 2 篇 基础医学(可授医学...
    • 2 篇 公共卫生与预防医...
    • 1 篇 特种医学
  • 8 篇 管理学
    • 5 篇 图书情报与档案管...
    • 3 篇 管理科学与工程(可...
  • 1 篇 农学
    • 1 篇 作物学

主题

  • 2 篇 machine learning
  • 2 篇 convolutional ne...
  • 1 篇 extrapolation
  • 1 篇 covid-19
  • 1 篇 analysis
  • 1 篇 eigenvalues and ...
  • 1 篇 adaptation
  • 1 篇 parallelization
  • 1 篇 scalability
  • 1 篇 productivity
  • 1 篇 deep-learning
  • 1 篇 drug interaction...
  • 1 篇 database systems
  • 1 篇 deep neural netw...
  • 1 篇 governance
  • 1 篇 training data
  • 1 篇 second-order
  • 1 篇 cholesky factori...
  • 1 篇 hyperparameter
  • 1 篇 acoustic emissio...

机构

  • 6 篇 fraunhofer insti...
  • 4 篇 king’s college l...
  • 4 篇 novartis institu...
  • 4 篇 janssen research...
  • 4 篇 centre for resea...
  • 4 篇 fraunhofer cente...
  • 4 篇 university of ox...
  • 4 篇 institute for ma...
  • 3 篇 bonn-aachen inte...
  • 3 篇 alzheimer center...
  • 3 篇 davos alzheimers...
  • 3 篇 correspondece
  • 3 篇 competence cente...
  • 3 篇 alzheimer center...
  • 2 篇 alzheimer center...
  • 2 篇 novartis cambrid...
  • 2 篇 university hospi...
  • 2 篇 department of bi...
  • 2 篇 department of ne...
  • 2 篇 scientific compu...

作者

  • 7 篇 holger fröhlich
  • 5 篇 neva coello
  • 4 篇 ioulietta lazaro...
  • 4 篇 spiros nikolopou...
  • 4 篇 chris hinds
  • 4 篇 alankar atreya
  • 4 篇 marijn muurling
  • 4 篇 pauline conde
  • 4 篇 casper de boer
  • 4 篇 srinivasan vaira...
  • 4 篇 anna-katharine b...
  • 4 篇 jelena curcic
  • 4 篇 dag aarsland
  • 4 篇 manuel lentzen
  • 4 篇 keuper janis
  • 4 篇 margarita gramma...
  • 3 篇 pieter jelle vis...
  • 3 篇 martin hofmann-a...
  • 3 篇 hofmann-apitius ...
  • 3 篇 vaibhav a naraya...

语言

  • 37 篇 英文
  • 1 篇 其他
检索条件"机构=Fraunhofer Center for Machine Learning and Institute for Algorithms and Scientific Computing SCAI"
38 条 记 录,以下是21-30 订阅
排序:
Combating mode collapse in GAN training: An empirical analysis using hessian eigenvalues
arXiv
收藏 引用
arXiv 2020年
作者: Lopez, Ricard Durall Chatzimichailidis, Avraam Labus, Peter Keuper, Janis Fraunhofer ITWM Germany IWR University of Heidelberg Germany Chair for Scientific Computing TU Kaiserslautern Germany Fraunhofer Center Machine Learning Germany Institute for Machine Learning and Analytics Offenburg University Germany
Generative adversarial networks (GANs) provide state-of-the-art results in image generation. However, despite being so powerful, they still remain very challenging to train. This is in particular caused by their highl... 详细信息
来源: 评论
On the influence of several factors on pathway enrichment analysis
arXiv
收藏 引用
arXiv 2022年
作者: Mubeen, Sarah Kodamullil, Alpha Tom Hofmann-Apitius, Martin Domingo-Fernández, Daniel Department of Bioinformatics Fraunhofer Institute for Algorithms and Scientific Computing Sankt Augustin53757 Germany University of Bonn Bonn53115 Germany Fraunhofer Center for Machine Learning Germany Enveda Biosciences BoulderCO80301 United States
Pathway enrichment analysis has become a widely used knowledge-based approach for the interpretation of biomedical data. Its popularity has led to an explosion of both enrichment methods and pathway databases. While t... 详细信息
来源: 评论
Predicting Properties of Oxide Glasses Using Informed Neural Networks
arXiv
收藏 引用
arXiv 2023年
作者: Maier, Gregor Hamaekers, Jan Martilotti, Dominik-Sergio Ziebarth, Benedikt Fraunhofer Institute for Algorithms and Scientific Computing SCAI Schloss Birlinghoven Sankt Augustin53757 Germany Institut für Numerische Simulation Universität Bonn Friedrich-Hirzebruch-Allee 7 Bonn53115 Germany Fraunhofer Center for Machine Learning Schloss Birlinghoven Sankt Augustin53757 Germany Schott AG Hattenbergstrasse 10 Mainz55122 Germany
Many modern-day applications require the development of new materials with specific properties. In particular, the design of new glass compositions is of great industrial interest. Current machine learning methods for... 详细信息
来源: 评论
Predictive analytics in quality assurance for assembly processes: lessons learned from a case study at an industry 4.0 demonstration cell
收藏 引用
Procedia CIRP 2021年 104卷 641-646页
作者: Peter Burggräf Johannes Wagner Benjamin Heinbach Fabian Steinberg Alejandro R. Pérez M. Lennart Schmallenbach Jochen Garcke Daniela Steffes-lai Moritz Wolter Chair of International Production Engineering and Management (IPEM) Universität Siegen Paul-Bonatz-Straße 9-11 57076 Siegen Germany Fraunhofer Institute for Algorithms and Scientific Computing (SCAI) Schloss Birlinghoven 1 53757 Sankt Augustin Germany Fraunhofer Center for Machine Learning Schloss Birlinghoven 1 53757 Sankt Augustin Germany Institute for Numerical Simulation Universität Bonn Endenicher Allee 19b 53115 Bonn Germany Institute for Computer Science Universität Bonn Endenicher Allee 19a 53115 Bonn Germany
Quality assurance (QA) is an important task in manufacturing to assess whether products meet their specifications. However, QA might be expensive, time-consuming, or incomplete. This paper presents a solution for pred... 详细信息
来源: 评论
Assessing the landscape of Alzheimer’s disease cohort data
收藏 引用
Alzheimer's & Dementia 2020年 第S4期16卷
作者: Colin Birkenbihl Yasamin Salimi Daniel Domingo-Fernández Holger Fröhlich Martin Hofmann-Apitius Fraunhofer Institute for Algorithms and Scientific Computing (SCAI) Sankt Augustin Germany Bonn-Aachen International Center for IT (b-it) Bonn Germany Fraunhofer Institute for Algorithms and Scientific Computing SCAI Sankt Augustin Germany
Background Data collected in cohort studies lay the groundwork for a plethora of Alzheimer’s disease (AD) research endeavours. While there exist numerous cohort datasets in our field, few dedicated efforts have focus...
来源: 评论
A representer theorem for deep kernel learning
The Journal of Machine Learning Research
收藏 引用
The Journal of machine learning Research 2019年 第1期20卷
作者: Bastian Bohn Christian Rieger Michael Griebel Institute for Numerical Simulation University of Bonn Bonn Germany Institute for Numerical Simulation University of Bonn Bonn Germany and Fraunhofer Center for Machine Learning Fraunhofer Institute for Algorithms and Scientific Computing SCAI Sankt Augustin Germany
In this paper we provide a finite-sample and an infinite-sample representer theorem for the concatenation of (linear combinations of) kernel functions of reproducing kernel Hilbert spaces. These results serve as mathe... 详细信息
来源: 评论
Ten new insights in climate science 2024
One Earth
收藏 引用
One Earth 2025年
作者: Schaeffer, Roberto Schipper, E. Lisa F. Ospina, Daniel Mirazo, Paula Alencar, Ane Anvari, Mehrnaz Artaxo, Paulo Biresselioglu, Mehmet Efe Blome, Tanja Boeckmann, Melanie Brink, Ebba Broadgate, Wendy Bustamante, Mercedes Cai, Wenju Canadell, Josep G. Cardinale, Roberto Chidichimo, Maria Paz Ditlevsen, Peter Eicker, Ursula Feron, Sarah Fikru, Mahelet G. Fuss, Sabine Gaye, Amadou T. Gustafsson, Örjan Harring, Niklas He, Cheng Hebden, Sophie Heilemann, Adrian Hirota, Marina Janardhanan, Nandakumar Juhola, Sirkku Jung, Tae Yong Kejun, Jiang Kilkiș, Şiir Kumarasinghe, Nilushi Lapola, David Lee, June-Yi Levis, Carolina Lusambili, Adelaide Maasakkers, Joannes D. MacIntosh, Claire Mahmood, Jemilah Mankin, Justin S. Marchegiani, Pía Martin, Maria Mukherji, Aditi Muñoz-Erickson, Tischa A. Niazi, Zeenat Nyangon, Joseph Pandipati, Santosh Perera, Amarasinghage T.D. Persad, Geeta Persson, Åsa Redman, Aaron Riipinen, Ilona Rockström, Johan Roffe, Sarah Roy, Joyashree Sakschewski, Boris Samset, Bjørn H. Schlosser, Peter Sharifi, Ayyoob Shih, Wan-Yu Sioen, Giles B. Sokona, Youba Stammer, Detlef Suk, Sunhee Thiam, Djiby Thompson, Vikki Tullos, Erin van Westen, René M. Vargas Falla, Ana Maria Vecellio, Daniel J. Worden, John Wu, Henry C. Xu, Chi Yang, Yang Zachariah, Mariam Zhang, Zhen Ziervogel, Gina Federal University of Rio de Janeiro Rio de Janeiro Brazil University of Bonn Bonn Germany Future Earth Secretariat Stockholm Sweden Arizona State University Tempe AZ United States Amazon Environmental Research Institute (IPAM) Brasilia Brazil Fraunhofer Institute for Algorithms and Scientific Computing SCAI St. Augustin Germany Potsdam Institute for Climate Impact Research (PIK) Potsdam Germany University of São Paulo São Paulo Brazil İzmir University of Economics İzmir Turkey Climate Service Center Germany (GERICS) Helmholtz-Zentrum Hereon Hamburg Germany University of Bremen Bremen Germany Lund University Lund Sweden University of Brasilia Brasilia Brazil Ocean University of China Qingdao China Xiamen University Xiamen China Commonwealth Scientific and Industrial Research Organisation (CSIRO) Environment Canberra ACT Australia University College London London United Kingdom National Scientific and Technical Research Council (CONICET) Buenos Aires Argentina National University of San Martin Buenos Aires Argentina University of Copenhagen Copenhagen Denmark Concordia University Montreal QC Canada University of Groningen Groningen Netherlands Missouri University of Science and Technology Rolla MO United States Mercator Research Institute on Global Commons and Climate Change (MCC) Berlin Germany Humboldt-University of Berlin Berlin Germany Cheikh Anta Diop University Dakar Senegal Stockholm University Stockholm Sweden University of Gothenburg Gothenburg Sweden Institute of Epidemiology Helmholtz Zentrum München—German Research Center for Environmental Health (GmbH) Neuherberg Germany European Space Agency (ESA) - European Centre for Space Applications and Telecommunications (ECSAT) Oxford United Kingdom Federal University of Santa Catarina Florianopolis Brazil Institute for Global Environmental Strategies (IGES) Hayama Japan University of Helsinki Helsinki Finland Yonsei University Graduate Seoul South Korea Chinese Academy of Macroeconomic
The years 2023 and 2024 were characterized by unprecedented warming across the globe, underscoring the urgency of climate action. Robust science advice for decision makers on subjects as complex as climate change requ... 详细信息
来源: 评论
A knowledge-based surrogate modeling approach for cup drawing with limited data
收藏 引用
IOP Conference Series: Materials Science and Engineering 2019年 第1期651卷
作者: L Morand D Helm R Iza-Teran J Garcke Fraunhofer Institute for Mechanics of Materials IWM Wöhlerstraße 11 Freiburg 79108 Germany Fraunhofer Center for Machine Learning and Institute for Algorithms and Scientific Computing SCAI Schloss Birlinghoven Sankt Augustin 53754 Germany Institute for Numerical Simulations University of Bonn Endenicher Allee 19b Bonn 53115 Germany
To predict the quality of a process outcome with given process parameters in real-time, surrogate models are often adopted. A surrogate model is a statistical model that interpolates between data points obtained eithe...
来源: 评论
From integrative disease modeling to predictive, preventive, personalized and participatory (P4) medicine
收藏 引用
EPMA Journal 2014年 第1期5卷 1-1页
作者: Erfan Younesi Martin Hofmann-Apitius Department of Bioinformatics Fraunhofer Institute for Algorithms and Scientific Computing (SCAI) Schloss Birlinghoven Sankt Augustin Germany Rheinische Friedrich-Wilhelms-Universität Bonn Bonn-Aachen International Center for IT Bonn Germany
来源: 评论
SYNTHETIC DATA GENERATION FOR A LONGITUDINAL COHORT STUDY - EVALUATION, METHOD EXTENSION AND REPRODUCTION OF PUBLISHED DATA ANALYSIS RESULTS
arXiv
收藏 引用
arXiv 2023年
作者: Kühnel, Lisa Schneider, Julian Perrar, Ines Adams, Tim Prasser, Fabian Nöthlings, Ute Fröhlich, Holger Fluck, Juliane Knowledge Management Zb Med Information Centre for Life Sciences Cologne50931 Germany Faculty of Technology Bielefeld University Bielefeld33615 Germany Institute of Nutritional and Food Sciences - Nutritional Epidemiology University of Bonn Bonn53115 Germany Department of Bioinformatics Fraunhofer Institute for Algorithms and Scientific Computing Scai Sankt Augustin53757 Germany Medical Informatics Group Berlin Institute of Health Charité - Universitätsmedizin Berlin Berlin10117 Germany Bonn-Aachen International Center for It University of Bonn Friedrich Hirzebruch-Allee 6 Bonn53115 Germany The Agricultural Faculty University of Bonn Bonn53115 Germany
Access to individual-level health data is essential for gaining new insights and advancing science. In particular, modern methods based on artificial intelligence rely on the availability of and access to large datase... 详细信息
来源: 评论