咨询与建议

限定检索结果

文献类型

  • 39 篇 期刊文献
  • 16 篇 会议

馆藏范围

  • 55 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 54 篇 工学
    • 37 篇 计算机科学与技术...
    • 24 篇 电气工程
    • 5 篇 测绘科学与技术
    • 3 篇 仪器科学与技术
    • 3 篇 交通运输工程
    • 3 篇 环境科学与工程(可...
    • 3 篇 软件工程
    • 2 篇 电子科学与技术(可...
    • 1 篇 信息与通信工程
    • 1 篇 控制科学与工程
    • 1 篇 土木工程
    • 1 篇 生物工程
  • 12 篇 医学
    • 10 篇 临床医学
    • 3 篇 基础医学(可授医学...
    • 1 篇 特种医学
  • 8 篇 理学
    • 5 篇 地球物理学
    • 3 篇 化学
    • 3 篇 生物学
  • 3 篇 管理学
    • 3 篇 管理科学与工程(可...

主题

  • 7 篇 deep learning
  • 3 篇 transformer
  • 3 篇 zero-shot learni...
  • 3 篇 contrastive lear...
  • 3 篇 chinese characte...
  • 3 篇 remote sensing i...
  • 3 篇 feature extracti...
  • 3 篇 visual tracking
  • 3 篇 unsupervised lea...
  • 2 篇 vision transform...
  • 2 篇 object detection
  • 2 篇 imaging
  • 2 篇 outlier removal
  • 2 篇 unsupervised dom...
  • 2 篇 domain adaptatio...
  • 2 篇 person re-identi...
  • 2 篇 guided sampling
  • 2 篇 histopathology i...
  • 2 篇 re-identificatio...
  • 2 篇 knowledge distil...

机构

  • 14 篇 xiamen univ tech...
  • 12 篇 xiamen univ tech...
  • 10 篇 fujian key lab p...
  • 7 篇 xiamen univ tech...
  • 6 篇 xiamen univ tech...
  • 6 篇 fujian key lab p...
  • 6 篇 univ chinese aca...
  • 5 篇 xiamen univ tech...
  • 5 篇 xiamen univ tech...
  • 4 篇 xiamen univ sch ...
  • 3 篇 xiamen univ tech...
  • 3 篇 chinese acad sci...
  • 3 篇 xiamen univ sch ...
  • 3 篇 chinese acad sci...
  • 2 篇 reconova technol...
  • 2 篇 chinese acad sci...
  • 2 篇 xiamen univ sch ...
  • 2 篇 xiamen key lab f...
  • 2 篇 univ sydney fac ...
  • 2 篇 shanghai jiao to...

作者

  • 31 篇 wang da-han
  • 27 篇 zhu shunzhi
  • 10 篇 chen si
  • 8 篇 wu yun
  • 7 篇 yan yan
  • 6 篇 zhang xu-yao
  • 6 篇 zhang xinxin
  • 5 篇 wang dahan
  • 4 篇 du xia
  • 4 篇 liu lijuan
  • 4 篇 lian jiawei
  • 3 篇 zheng yuchao
  • 3 篇 wu jiahua
  • 3 篇 wang yan
  • 3 篇 weng wei
  • 3 篇 luo guo-feng
  • 3 篇 jiang nanfeng
  • 3 篇 he yifan
  • 3 篇 guo hanlin
  • 2 篇 liu hang

语言

  • 54 篇 英文
  • 1 篇 其他
检索条件"机构=Fujian Key Lab Pattern Recognit & Image Understand"
55 条 记 录,以下是1-10 订阅
排序:
Multi-Branch Enhanced Discriminative Network for Vehicle Re-Identification
收藏 引用
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 2024年 第2期25卷 1263-1274页
作者: Lian, Jiawei Wang, Da-Han Wu, Yun Zhu, Shunzhi Xiamen Univ Technol Sch Comp & Informat Engn Fujian Key Lab Pattern Recognit & Image Understand Xiamen 361024 Peoples R China
Vehicle re-identification (ReID) is the task of identifying the same vehicle across numerous cameras. This is a complex classification task, and the fine-grained information and strong discrimination features have pro... 详细信息
来源: 评论
Vehicle Re-Identification by Separating Representative Spatial Features
收藏 引用
COGNITIVE COMPUTATION 2023年 第5期15卷 1640-1655页
作者: Zhou, Wei Lian, Jiawei Zhu, Shunzhi Wu, Yun Wang, Da-Han Xiamen Univ Technol Sch Comp & Informat Engn Fujian Key Lab Pattern Recognit & Image Understand Xiamen 361024 Fujian Peoples R China
As a complex image classification problem, re-identification (ReID) requires the model to capture diverse representative features of vehicles through different spatial orientation cameras. However, it has been observe... 详细信息
来源: 评论
CCNN-former: Combining convolutional neural network and Transformer for image-based traffic time series prediction
收藏 引用
EXPERT SYSTEMS WITH APPLICATIONS 2025年 268卷
作者: Liu, Lijuan Wu, Mingxiao Lv, Qinzhi Liu, Hang Wang, Yan Xiamen Univ Technol Sch Comp & Informat Engn Xiamen 361024 Peoples R China Fujian Key Lab Pattern Recognit & Image Understand Xiamen 361024 Peoples R China
Traffic time series prediction is crucial to the development of urban intelligent transportation systems (ITS). Traditional prediction models are mainly designed to extract the spatio-temporal features based on histor... 详细信息
来源: 评论
Multimodal urban traffic flow prediction based on multi-scale time series imaging
收藏 引用
pattern recognitION 2025年 164卷
作者: Lv, Qinzhi Liu, Lijuan Yang, Ruotong Wang, Yan Xiamen Univ Technol Sch Comp & Informat Engn Xiamen 361024 Peoples R China Fujian Key Lab Pattern Recognit & Image Understand Xiamen 361024 Peoples R China
Accurate traffic flow prediction is of great significance for administrators and travelers to make informed decisions in advance. Since the increasing correlation between predicted flow and historical flow from more r... 详细信息
来源: 评论
Global-local graph attention: unifying global and local attention for node classification
收藏 引用
COMPUTER JOURNAL 2024年 第10期67卷 2959-2969页
作者: Lin, Keao Xie, Xiaozhu Weng, Wei Du, Xiaofeng Xiamen Univ Technol Coll Comp & Informat Engn Xiamen 361024 Peoples R China Fujian Key Lab Pattern Recognit & Image Understand Xiamen 361024 Peoples R China
Graph Neural Networks (GNNs) are deep learning models specifically designed for analyzing graph-structured data, capturing complex relationships and structures to improve analysis and prediction. A common task in GNNs... 详细信息
来源: 评论
Distillation-Based Utility Assessment for Compacted Underwater Information
收藏 引用
IEEE SIGNAL PROCESSING LETTERS 2024年 31卷 481-485页
作者: Liao, Honggang Jiang, Nanfeng Chen, Weiling Wei, Hongan Zhao, Tiesong Fuzhou Univ Fujian Key Lab Intelligent Proc & Wireless Transmi Fuzhou 350108 Peoples R China Xiamen Univ Technol Fujian Key Lab Pattern Recognit & Image Understand Xiamen 361024 Peoples R China Fujian Sci & Technol Innovat Lab Optoelect Informa Fuzhou 350116 Peoples R China
The limited bandwidth of underwater acoustic channels poses a challenge to the efficiency of multimedia information transmission. To improve efficiency, the system aims to transmit less data while maintaining image ut... 详细信息
来源: 评论
SiamCCF: Siamese visual tracking via cross-layer calibration fusion
收藏 引用
IET COMPUTER VISION 2023年 第8期17卷 869-882页
作者: Chen, Si Huang, Huang Zhu, Shunzhi Xu, Huarong He, Yifan Wang, Da-Han Xiamen Univ Technol Sch Comp & Informat Engn Fujian Key Lab Pattern Recognit & Image Understand Xiamen Peoples R China Reconova Technol Co Ltd Xiamen Peoples R China
Siamese networks have attracted wide attention in visual tracking due to their competitive accuracy and speed. However, the existing Siamese trackers usually leverage a fixed linear aggregation of feature maps, which ... 详细信息
来源: 评论
Identity-Aware Contrastive Knowledge Distillation for Facial Attribute recognition
收藏 引用
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 2023年 第10期33卷 5692-5706页
作者: Chen, Si Zhu, Xueyan Yan, Yan Zhu, Shunzhi Li, Shao-Zi Wang, Da-Han Xiamen Univ Technol Sch Comp & Informat Engn Fujian Key Lab Pattern Recognit & Image Understand Xiamen 361024 Peoples R China Xiamen Univ Sch Informat Xiamen 361005 Peoples R China
Facial attribute recognition (FAR) is an important and yet challenging multi-label learning task in computer vision. Existing FAR methods have achieved promising performance with the development of deep learning. Howe... 详细信息
来源: 评论
HD-Net: A hybrid dynamic spatio-temporal network for traffic flow prediction
收藏 引用
IET INTELLIGENT TRANSPORT SYSTEMS 2024年 第4期18卷 672-690页
作者: Liu, Lijuan Wang, Fengzhi Liu, Hang Zhu, Shunzhi Wang, Yan Xiamen Univ Technol Coll Comp & Informat Engn Xiamen Peoples R China Fujian Key Lab Pattern Recognit & Image Understand Xiamen Peoples R China Xiamen Univ Technol Coll Comp & Informat Engn Xiamen 361024 Peoples R China
Accurately predicting traffic flow is crucial for intelligent transportation systems (ITS). In recent years, many deep learning-based prediction models have been widely applied in traffic flow prediction, and various ... 详细信息
来源: 评论
Unsupervised remote sensing image thin cloud removal method based on contrastive learning
收藏 引用
IET image PROCESSING 2024年 第7期18卷 1844-1861页
作者: Tan, Zhan Cong Du, Xiao Feng Man, Wang Xie, Xiao Zhu Wang, Gui Song Nie, Qin Xiamen Univ Technol Sch Comp & Informat Engn Xiamen 361024 Peoples R China Xiamen Univ Technol Inst Spatial Informat Technol Xiamen Peoples R China Fujian Key Lab Pattern Recognit & Image Understand Xiamen Peoples R China
Cloud removal algorithm is a crucial step of remote sensing image preprocessing. The current mainstream remote sensing image cloud removal algorithms are implemented based on deep learning, and most of them are superv... 详细信息
来源: 评论