咨询与建议

限定检索结果

文献类型

  • 39 篇 期刊文献
  • 16 篇 会议

馆藏范围

  • 55 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 54 篇 工学
    • 37 篇 计算机科学与技术...
    • 24 篇 电气工程
    • 5 篇 测绘科学与技术
    • 3 篇 仪器科学与技术
    • 3 篇 交通运输工程
    • 3 篇 环境科学与工程(可...
    • 3 篇 软件工程
    • 2 篇 电子科学与技术(可...
    • 1 篇 信息与通信工程
    • 1 篇 控制科学与工程
    • 1 篇 土木工程
    • 1 篇 生物工程
  • 12 篇 医学
    • 10 篇 临床医学
    • 3 篇 基础医学(可授医学...
    • 1 篇 特种医学
  • 8 篇 理学
    • 5 篇 地球物理学
    • 3 篇 化学
    • 3 篇 生物学
  • 3 篇 管理学
    • 3 篇 管理科学与工程(可...

主题

  • 7 篇 deep learning
  • 3 篇 transformer
  • 3 篇 zero-shot learni...
  • 3 篇 contrastive lear...
  • 3 篇 chinese characte...
  • 3 篇 remote sensing i...
  • 3 篇 feature extracti...
  • 3 篇 visual tracking
  • 3 篇 unsupervised lea...
  • 2 篇 vision transform...
  • 2 篇 object detection
  • 2 篇 imaging
  • 2 篇 outlier removal
  • 2 篇 unsupervised dom...
  • 2 篇 domain adaptatio...
  • 2 篇 person re-identi...
  • 2 篇 guided sampling
  • 2 篇 histopathology i...
  • 2 篇 re-identificatio...
  • 2 篇 knowledge distil...

机构

  • 14 篇 xiamen univ tech...
  • 12 篇 xiamen univ tech...
  • 10 篇 fujian key lab p...
  • 7 篇 xiamen univ tech...
  • 6 篇 xiamen univ tech...
  • 6 篇 fujian key lab p...
  • 6 篇 univ chinese aca...
  • 5 篇 xiamen univ tech...
  • 5 篇 xiamen univ tech...
  • 4 篇 xiamen univ sch ...
  • 3 篇 xiamen univ tech...
  • 3 篇 chinese acad sci...
  • 3 篇 xiamen univ sch ...
  • 3 篇 chinese acad sci...
  • 2 篇 reconova technol...
  • 2 篇 chinese acad sci...
  • 2 篇 xiamen univ sch ...
  • 2 篇 xiamen key lab f...
  • 2 篇 univ sydney fac ...
  • 2 篇 shanghai jiao to...

作者

  • 31 篇 wang da-han
  • 27 篇 zhu shunzhi
  • 10 篇 chen si
  • 8 篇 wu yun
  • 7 篇 yan yan
  • 6 篇 zhang xu-yao
  • 6 篇 zhang xinxin
  • 5 篇 wang dahan
  • 4 篇 du xia
  • 4 篇 liu lijuan
  • 4 篇 lian jiawei
  • 3 篇 zheng yuchao
  • 3 篇 wu jiahua
  • 3 篇 wang yan
  • 3 篇 weng wei
  • 3 篇 luo guo-feng
  • 3 篇 jiang nanfeng
  • 3 篇 he yifan
  • 3 篇 guo hanlin
  • 2 篇 liu hang

语言

  • 54 篇 英文
  • 1 篇 其他
检索条件"机构=Fujian Key Lab Pattern Recognit & Image Understand"
55 条 记 录,以下是11-20 订阅
排序:
Enhance the old representations' adaptability dynamically for exemplar-free continual learning
收藏 引用
NEUROCOMPUTING 2025年 639卷
作者: Li, Kunchi Ding, Chaoyue Wan, Jun Yu, Shan Xiamen Univ Technol Sch Comp & Informat Engn Xiamen 361024 Fujian Peoples R China Xiamen Univ Technol Fujian Key Lab Pattern Recognit & Image Understand Xiamen 361024 Fujian Peoples R China Chinese Acad Sci Inst Automat Beijing 100190 Peoples R China
In continual learning, new data often falls outside the distribution of previous data. Since the old model is trained solely on past tasks and has not encountered the new data, its learned representations lack the ada... 详细信息
来源: 评论
Joint radical embedding and detection for zero-shot Chinese character recognition
收藏 引用
pattern recognitION 2025年 161卷
作者: Luo, Guo-Feng Wang, Da-Han Zhang, Xu-Yao Lin, Zi-Hao Zhu, Shunzhi Xiamen Univ Technol Sch Comp & Informat Engn Fujian Key Lab Pattern Recognit & Image Understand Xiamen Peoples R China Chinese Acad Sci Inst Automat State Key Lab Multimodal Artificial Intelligence S Beijing Peoples R China Univ Chinese Acad Sci Sch Artificial Intelligence Beijing Peoples R China
Radical-based Zero-shot Chinese character recognition (ZSCCR) has attracted much attentions in recent years as radicals are common mid-level primitives that can bridge seen and unseen classes. However, while existing ... 详细信息
来源: 评论
Attribute graph clustering via transformer and graph attention autoencoder
收藏 引用
INTELLIGENT DATA ANALYSIS 2025年 第2期29卷 306-319页
作者: Weng, Wei Hou, Fengxia Gong, Shengchao Chen, Fen Lin, Dongsheng Xiamen Univ Technol Coll Comp & Informat Engn 600 Ligong Rd Xiamen 361024 Peoples R China Xiamen Univ Technol Fujian Key Lab Pattern Recognit & Image Understand Xiamen Peoples R China Xiamen Fuyun Informat Tech Co Xiamen Peoples R China
Graph clustering is a crucial technique for partitioning graph data. Recent research has concentrated on integrating topology and attribute information from attribute graphs to generate node embeddings, which are subs... 详细信息
来源: 评论
HC-GCN: hierarchical contrastive graph convolutional network for unsupervised domain adaptation on person re-identification
收藏 引用
MULTIMEDIA SYSTEMS 2023年 第5期29卷 2779-2790页
作者: Chen, Si Xu, Bolun Zhang, Miaohui Yan, Yan Du, Xia Zhuang, Weiwei Wu, Yun Xiamen Univ Technol Sch Comp & Informat Engn Fujian Key Lab Pattern Recognit & Image Understand Xiamen 361024 Peoples R China Jiangxi Acad Sci Inst Energy Res Nanchang 330096 Peoples R China Xiamen Univ Sch Informat Fujian Key Lab Sensing & Comp Smart City Xiamen 361005 Peoples R China
The unsupervised domain adaptation (UDA) task on person re-identification (ReID) aims at spotting a person of interest under cross-camera by transferring the person knowledge learned from a labeled source domain to an... 详细信息
来源: 评论
Low-light image enhancement with quality-oriented pseudo labels via semi-supervised contrastive learning
收藏 引用
EXPERT SYSTEMS WITH APPLICATIONS 2025年 276卷
作者: Jiang, Nanfeng Cao, Yiwen Zhang, Xu-Yao Wang, Da-Han He, Yifan Wang, Chiming Zhu, Shunzhi Xiamen Univ Technol Sch Comp & Informat Engn Fujian Key Lab Pattern Recognit & Image Understand Xiamen Peoples R China Chinese Acad Sci Inst Automat State Key Lab Multimodal Artificial Intelligence S Beijing Peoples R China Univ Chinese Acad Sci Sch Artificial Intelligence Beijing Peoples R China Reconova Technol Co Ltd Xiamen Key Lab Visual Percept Technol & Applicat Xiamen Peoples R China
Existing Low-Light image Enhancement (LLIE) methods exhibit limitations when applied to complex scenes, primarily due to the lack of adaptation to real-world and synthetic images. To address this issue, we introduce a... 详细信息
来源: 评论
GridIIS: Grid Based Interactive image Segmentation  6th
GridIIS: Grid Based Interactive Image Segmentation
收藏 引用
6th Chinese Conference on pattern recognition and Computer Vision (PRCV)
作者: Zhu, Pengqi Wang, Da-Han Zhu, Shunzhi Xiaman Univ Technol Sch Comp & Informat Engn Xiamen Peoples R China Fujian Key Lab Pattern Recognit & Image Understan Xiamen Peoples R China
Interactive segmentation enables users to specify the object of interest (OOI) via various interaction strategies to obtain accurate segmentation results. An ideal interactive method should efficiently and accurately ... 详细信息
来源: 评论
Bridge the Gap of Semantic Context: A Boundary-Guided Context Fusion UNet for Medical image Segmentation  7th
Bridge the Gap of Semantic Context: A Boundary-Guided Contex...
收藏 引用
7th Chinese Conference on pattern recognition and Computer Vision
作者: Chen, Yu Wu, Jiahua Wang, Da-Han Zhang, Xinxin Zhu, Shunzhi Xiamen Univ Technol Sch Comp & Informat Engn Xiamen 361024 Peoples R China Fujian Key Lab Pattern Recognit & Image Understan Xiamen 361024 Peoples R China
Accurate medical image segmentation of lesion areas is crucial in assisting diagnostics and treatment planning of diseases. In this paper, we propose a boundary-guided context fusion U-Net(BCF-UNet) for medical image ... 详细信息
来源: 评论
Stain-adaptive self-supervised learning for histopathology image analysis
收藏 引用
pattern recognitION 2025年 161卷
作者: Ye, Haili Yang, Yuan-yuan Zhu, Shunzhi Wang, Da-Han Zhang, Xu-Yao Yang, Xin Huang, Heguang Xiamen Univ Technol Sch Comp & Informat Engn Fujian Key Lab Pattern Recognit & Image Understand Xiamen 361024 Fujian Peoples R China Fujian Med Univ Union Hosp Dept Gen Surg 29 Xinquan Rd Fuzhou 350001 Fujian Peoples R China Chinese Acad Sci Inst Automat State Key Lab Multimodal Artificial Intelligence S Beijing Peoples R China Univ Chinese Acad Sci Sch Artificial Intelligence Beijing Peoples R China Huazhong Univ Sci & Technol Sch Elect Informat & Commun Wuhan 430000 Hubei Peoples R China
Staining variability is a critical factor affecting the accuracy of histopathological image analysis by reducing the distinguishability of tissue regions. Existing methods employ preprocessing techniques such as color... 详细信息
来源: 评论
UAM-Net: An Attention-Based Multi-level Feature Fusion UNet for Remote Sensing image Segmentation  6th
UAM-Net: An Attention-Based Multi-level Feature Fusion UNet ...
收藏 引用
6th Chinese Conference on pattern recognition and Computer Vision (PRCV)
作者: Cao, Yiwen Jiang, Nanfeng Wang, Da-Han Wu, Yun Zhu, Shunzhi Xiamen Univ Technol Sch Comp & Informat Engn Xiamen 361024 Peoples R China Fujian Key Lab Pattern Recognit & Image Understan Xiamen 361024 Peoples R China
Semantic segmentation of Remote Sensing images (RSIs) is an essential application for precision agriculture, environmental protection, and economic assessment. While UNet-based networks have made significant progress,... 详细信息
来源: 评论
Graph Convolutional Networks Based on Neighborhood Expansion  7
Graph Convolutional Networks Based on Neighborhood Expansion
收藏 引用
7th International Conference on Electronic Information Technology and Computer Engineering (EITCE)
作者: Gong, Shengchao Weng, Wei Hou, Fengxia Lin, Dongsheng Wen, Juan Xiamen Univ Technol Xiamen Fujian Peoples R China Fujian Key Lab Pattern Recognit & Image Understan Xiamen Peoples R China Xiamen Univ Xiamen Fujian Peoples R China
Graph neural networks (GNNs) are an efficient framework for learning graph-structured data and achieving state-of-the-art performance on many tasks, including node classification, link prediction, and graph classi-fic... 详细信息
来源: 评论