咨询与建议

限定检索结果

文献类型

  • 260 篇 会议
  • 123 篇 期刊文献

馆藏范围

  • 383 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 239 篇 工学
    • 181 篇 计算机科学与技术...
    • 149 篇 软件工程
    • 63 篇 信息与通信工程
    • 27 篇 生物工程
    • 26 篇 电气工程
    • 25 篇 控制科学与工程
    • 21 篇 机械工程
    • 21 篇 电子科学与技术(可...
    • 19 篇 光学工程
    • 12 篇 仪器科学与技术
    • 11 篇 化学工程与技术
    • 10 篇 动力工程及工程热...
    • 10 篇 交通运输工程
    • 10 篇 生物医学工程(可授...
    • 8 篇 环境科学与工程(可...
    • 7 篇 土木工程
    • 7 篇 安全科学与工程
    • 6 篇 建筑学
  • 138 篇 理学
    • 85 篇 数学
    • 32 篇 统计学(可授理学、...
    • 29 篇 生物学
    • 26 篇 物理学
    • 11 篇 化学
    • 7 篇 系统科学
  • 75 篇 管理学
    • 44 篇 管理科学与工程(可...
    • 32 篇 图书情报与档案管...
    • 22 篇 工商管理
  • 20 篇 法学
    • 17 篇 社会学
  • 11 篇 医学
    • 10 篇 临床医学
  • 7 篇 经济学
    • 7 篇 应用经济学
  • 3 篇 教育学
  • 3 篇 农学

主题

  • 30 篇 feature extracti...
  • 16 篇 semantics
  • 11 篇 optimization
  • 9 篇 deep learning
  • 9 篇 image segmentati...
  • 9 篇 cloud computing
  • 9 篇 data models
  • 9 篇 training
  • 8 篇 predictive model...
  • 7 篇 reinforcement le...
  • 7 篇 big data
  • 7 篇 data mining
  • 7 篇 machine learning
  • 6 篇 task analysis
  • 6 篇 computational mo...
  • 6 篇 particle swarm o...
  • 6 篇 genetic algorith...
  • 6 篇 clustering algor...
  • 6 篇 computer vision
  • 5 篇 computation offl...

机构

  • 63 篇 college of compu...
  • 62 篇 college of mathe...
  • 38 篇 fujian provincia...
  • 35 篇 fujian key labor...
  • 26 篇 fujian key labor...
  • 20 篇 engineering rese...
  • 18 篇 fujian provincia...
  • 17 篇 key laboratory o...
  • 15 篇 fujian provincia...
  • 11 篇 key laboratory o...
  • 11 篇 key laboratory o...
  • 9 篇 key laboratory o...
  • 7 篇 shandong college...
  • 7 篇 shandong provinc...
  • 7 篇 peng cheng labor...
  • 7 篇 fuzhou universit...
  • 7 篇 college of mathe...
  • 7 篇 fujian provincia...
  • 7 篇 fujian provincia...
  • 7 篇 school of inform...

作者

  • 29 篇 guo wenzhong
  • 20 篇 guo kun
  • 15 篇 wenzhong guo
  • 13 篇 xing chen
  • 13 篇 xianghan zheng
  • 12 篇 wang shiping
  • 12 篇 chen xing
  • 11 篇 yu zhiyong
  • 10 篇 xiao ke
  • 10 篇 guolong chen
  • 9 篇 li jinping
  • 8 篇 xiaodong wu
  • 8 篇 zheng xianghan
  • 8 篇 ke xiao
  • 8 篇 yanhua liu
  • 8 篇 wu ling
  • 7 篇 huang fangwan
  • 7 篇 kun guo
  • 7 篇 genggeng liu
  • 6 篇 lin dazhen

语言

  • 367 篇 英文
  • 14 篇 中文
  • 7 篇 其他
检索条件"机构=Fujian Key Laboratory of Network Computing and Intelligent Information Processing"
383 条 记 录,以下是121-130 订阅
排序:
Medical Image Segmentation Based on 3d Pdc with Swin Transformer
SSRN
收藏 引用
SSRN 2025年
作者: Fan, Lin Ding, Xiaojia Wang, Zhongmin Wang, Hai Zhang, Rong School of Computer Science and Technology Xi’an University of Posts and Telecommunications Shaanxi Xi’an710121 China Shaanxi Key Laboratory of Network Data Analysis and Intelligent Processing Shaanxi Xi’an710121 China Xi’an Key Laboratory of Big Data and Intelligent Computing Shaanxi Xi’an710121 China The School of Information Science and Technology Northwest University Shaanxi Xi’an710121 China
3D medical image segmentation is vital for disease diagnosis and effective treatment strategies. Despite the advancements in Convolutional Neural networks (CNN), their fixed receptive fields constrain global context m... 详细信息
来源: 评论
Partial Relaxed Optimal Transport for Denoised Recommendation
Partial Relaxed Optimal Transport for Denoised Recommendatio...
收藏 引用
2022 Workshop on Deep Learning for Search and Recommendation, DL4SR 2022
作者: Tan, Yanchao Yang, Carl Wei, Xiangyu Wu, Ziyue Liu, Weiming Zheng, Xiaolin The College of Computer and Data Science Fuzhou University Fuzhou350116 China Fujian Key Laboratory of Network Computing and Intelligent Information Processing Fuzhou University Fuzhou350116 China The Department of Computer Science Emory University Atlanta30322 United States The College of Computer Science Zhejiang University Hangzhou310027 China The School of Management Zhejiang University Hangzhou310058 China
The interaction data used by recommender systems (RSs) inevitably include noises resulting from mistaken or exploratory clicks, especially under implicit feedbacks. Without proper denoising, RS models cannot effective... 详细信息
来源: 评论
A Two-Stage Graph Computation Model with Communication Equilibrium  15th
A Two-Stage Graph Computation Model with Communication Equil...
收藏 引用
15th CCF Conference on Computer Supported Cooperative Work and Social computing, Chinese CSCW 2020
作者: Dong, Yanmei Chen, Rongwang Guo, Kun College of Mathematics and Computer Science Fuzhou University Fuzhou350108 China Fujian Provincial Key Laboratory of Network Computing and Intelligent Information Processing Fuzhou China Key Laboratory of Spatial Data Mining and Information Sharing Ministry of Education Fuzhou350108 China College of Mathematics and Computer Science Wuyi University Wuyishan Fujian354300 China Digital Fujian Tourism Big Data Institute Wuyishan Fujian354300 China
Distributed graph computing aims at performing in-depth analysis on large networks in a parallel manner. Iterative communication computation is an important model to perform graph analysis. Moreover, high-efficiency i... 详细信息
来源: 评论
NOBGP: A Novel Optimized Balanced Graph Partitioning Algorithm  19th
NOBGP: A Novel Optimized Balanced Graph Partitioning Algorit...
收藏 引用
19th CCF Conference on Computer Supported Cooperative Work and Social computing, ChineseCSCW 2024
作者: Chen, Jiebin Hu, Ziqiang Ye, Renjie Zhang, Qishan Guo, Kun College of Computer and Data Science Fuzhou University Fuzhou350108 China Engineering Research Center of Big Data Intelligence Ministry of Education Fuzhou350108 China Fujian Key Laboratory of Network Computing and Intelligent Information Processing Fuzhou University Fuzhou350108 China Xianda College of Economics and Humanities Shanghai International Studies University Shanghai China
Large-scale graphs have become prevalent with the advent of the big data era. Distributed graph computing systems are commonly used for processing and analyzing large-scale graphs, with graph partitioning being a key ... 详细信息
来源: 评论
AGNN: Alternating Graph-Regularized Neural networks to Alleviate Over-Smoothing
arXiv
收藏 引用
arXiv 2023年
作者: Chen, Zhaoliang Wu, Zhihao Lin, Zhenghong Wang, Shiping Plant, Claudia Guo, Wenzhong The College of Computer and Data Science Fuzhou University Fuzhou350116 China The Fujian Provincial Key Laboratory of Network Computing and Intelligent Information Processing Fuzhou University Fuzhou350116 China The Faculty of Computer Science Austria The research network Data Science @ Uni Vienna University of Vienna Vienna1090 Austria
Graph Convolutional network (GCN) with the powerful capacity to explore graph-structural data has gained noticeable success in recent years. Nonetheless, most of the existing GCN-based models suffer from the notorious... 详细信息
来源: 评论
Research on Data Augmentation for Garbage Classification with Target Detection Algorithm
Research on Data Augmentation for Garbage Classification wit...
收藏 引用
2022 International Applied Computational Electromagnetics Society Symposium, ACES-China 2022
作者: Chen, Jiansong Zuo, Shikai Lin, Yun Tang, Kai Zou, Jianhang Feng, Naixing Cai, Yijun Xiamen University of Technology Smart Sensing Integrated Circuit Engineering Research Center of Universities in Fujian Province Xiamen361024 China Xiamen Wish Information Technology Co. Ltd Xiamen361006 China Anhui University Key Laboratory of Intelligent Computing & Signal Processing Ministry of Education Hefei China
Garbage classification is an essential work in daily life. With the development of artificial intelligence (AI), we have begun to use object detection to achieve garbage classification. However, the stacking and occlu... 详细信息
来源: 评论
MOAL: Multi-view Out-of-distribution Awareness Learning
收藏 引用
Neural networks : the official journal of the International Neural network Society 2025年 190卷 107581页
作者: Xuzheng Wang Zihan Fang Shide Du Wenzhong Guo Shiping Wang College of Computer and Data Science Fuzhou University Fuzhou 350108 China Fujian Provincial Key Laboratory of Network Computing and Intelligent Information Processing Fuzhou University Fuzhou 350108 China. Electronic address: wangxuzheng@***. Fujian Provincial Key Laboratory of Network Computing and Intelligent Information Processing Fuzhou University Fuzhou 350108 China. Electronic address: fzihan11@***. Fujian Provincial Key Laboratory of Network Computing and Intelligent Information Processing Fuzhou University Fuzhou 350108 China. Electronic address: dushidems@***. Fujian Provincial Key Laboratory of Network Computing and Intelligent Information Processing Fuzhou University Fuzhou 350108 China. Electronic address: guowenzhong@***. Fujian Provincial Key Laboratory of Network Computing and Intelligent Information Processing Fuzhou University Fuzhou 350108 China. Electronic address: shipingwangphd@***.
Multi-view learning integrates data from multiple sources to enhance task performance by improving data quality. However, existing approaches primarily focus on intra-distribution data learning and consequently fail t... 详细信息
来源: 评论
Traffic Engineering in Dynamic Hybrid Segment Routing networks
收藏 引用
Computers, Materials & Continua 2021年 第7期68卷 655-670页
作者: Yingya Guo Kai Huang Cheng Hu Jiangyuan Yao Siyu Zhou College of Mathematics and Computer Science Fuzhou UniversityFuzhou350000China Fujian Key Laboratory of Network Computing and Intelligent Information Processing Fuzhou UniversityFuzhou350000China Key Laboratory of Spatial Data Mining&Information Sharing Ministry of EducationFuzhou350003China School of Information Science and Technology Guangdong University of Foreign StudiesGuangzhou510006China School of Computer Science and Cyberspace Security Hainan UniversityHaiKou570228China Tandon School of Engineering New York UniversityNew York10012USA Department of Computing Hong Kong Polytechnic UniversityHong Hom999077Hong Kong
The emergence of Segment Routing(SR)provides a novel routing paradigm that uses a routing technique called source packet *** SR architecture,the paths that the packets choose to route on are indicated at the ingress *... 详细信息
来源: 评论
SpreadFGL: Edge-Client Collaborative Federated Graph Learning with Adaptive Neighbor Generation
arXiv
收藏 引用
arXiv 2024年
作者: Zhong, Luying Pi, Yueyang Chen, Zheyi Yu, Zhengxin Miao, Wang Chen, Xing Min, Geyong College of Computer and Data Science Fuzhou University China Fujian Provincial Key Laboratory of Network Computing and Intelligent Information Processing Fuzhou University China Engineering Research Center of Big Data Intelligence Ministry of Education China School of Computing and Communications University of Lancaster United Kingdom School of Engineering Computing and Mathematics University of Plymouth United Kingdom Department of Computer Science University of Exeter United Kingdom
Federated Graph Learning (FGL) has garnered widespread attention by enabling collaborative training on multiple clients for semi-supervised classification tasks. However, most existing FGL studies do not well consider... 详细信息
来源: 评论
ADEdgeDrop: Adversarial Edge Dropping for Robust Graph Neural networks
arXiv
收藏 引用
arXiv 2024年
作者: Chen, Zhaoliang Wu, Zhihao Sadikaj, Ylli Plant, Claudia Dai, Hong-Ning Wang, Shiping Cheung, Yiu-Ming Guo, Wenzhong College of Computer and Data Science Fuzhou University Fuzhou350116 China Department of Computer Science Hong Kong Baptist University Hong Kong Fujian Provincial Key Laboratory of Network Computing and Intelligent Information Processing Fuzhou University Fuzhou350116 China Faculty of Computer Science and with the research network Data Science @ Uni Vienna University of Vienna Vienna1090 Austria
Although Graph Neural networks (GNNs) have exhibited the powerful ability to gather graph-structured information from neighborhood nodes via various message-passing mechanisms, the performance of GNNs is limited by po... 详细信息
来源: 评论