咨询与建议

限定检索结果

文献类型

  • 258 篇 会议
  • 127 篇 期刊文献

馆藏范围

  • 385 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 243 篇 工学
    • 183 篇 计算机科学与技术...
    • 151 篇 软件工程
    • 63 篇 信息与通信工程
    • 27 篇 电气工程
    • 27 篇 生物工程
    • 25 篇 控制科学与工程
    • 22 篇 电子科学与技术(可...
    • 21 篇 机械工程
    • 20 篇 光学工程
    • 12 篇 仪器科学与技术
    • 11 篇 化学工程与技术
    • 10 篇 动力工程及工程热...
    • 10 篇 交通运输工程
    • 10 篇 生物医学工程(可授...
    • 8 篇 环境科学与工程(可...
    • 7 篇 土木工程
    • 7 篇 安全科学与工程
    • 6 篇 建筑学
  • 139 篇 理学
    • 86 篇 数学
    • 32 篇 统计学(可授理学、...
    • 29 篇 生物学
    • 26 篇 物理学
    • 11 篇 化学
    • 7 篇 系统科学
  • 76 篇 管理学
    • 44 篇 管理科学与工程(可...
    • 33 篇 图书情报与档案管...
    • 22 篇 工商管理
  • 20 篇 法学
    • 17 篇 社会学
  • 11 篇 医学
    • 10 篇 临床医学
  • 7 篇 经济学
    • 7 篇 应用经济学
  • 3 篇 教育学
  • 3 篇 农学

主题

  • 30 篇 feature extracti...
  • 16 篇 semantics
  • 11 篇 optimization
  • 9 篇 image segmentati...
  • 9 篇 cloud computing
  • 9 篇 data models
  • 9 篇 training
  • 8 篇 deep learning
  • 8 篇 predictive model...
  • 7 篇 reinforcement le...
  • 7 篇 big data
  • 7 篇 data mining
  • 7 篇 machine learning
  • 6 篇 task analysis
  • 6 篇 contrastive lear...
  • 6 篇 computational mo...
  • 6 篇 particle swarm o...
  • 6 篇 genetic algorith...
  • 6 篇 clustering algor...
  • 6 篇 computer vision

机构

  • 63 篇 college of compu...
  • 62 篇 college of mathe...
  • 38 篇 fujian provincia...
  • 37 篇 fujian key labor...
  • 26 篇 fujian key labor...
  • 20 篇 engineering rese...
  • 18 篇 fujian provincia...
  • 17 篇 key laboratory o...
  • 15 篇 fujian provincia...
  • 11 篇 key laboratory o...
  • 11 篇 key laboratory o...
  • 9 篇 key laboratory o...
  • 8 篇 fuzhou universit...
  • 7 篇 shandong college...
  • 7 篇 shandong provinc...
  • 7 篇 peng cheng labor...
  • 7 篇 college of mathe...
  • 7 篇 fujian provincia...
  • 7 篇 fujian provincia...
  • 7 篇 school of inform...

作者

  • 29 篇 guo wenzhong
  • 20 篇 guo kun
  • 14 篇 wenzhong guo
  • 13 篇 xing chen
  • 13 篇 xianghan zheng
  • 12 篇 wang shiping
  • 12 篇 chen xing
  • 11 篇 yu zhiyong
  • 10 篇 guolong chen
  • 9 篇 xiao ke
  • 9 篇 li jinping
  • 8 篇 niu yuzhen
  • 8 篇 xiaodong wu
  • 8 篇 zheng xianghan
  • 8 篇 ke xiao
  • 8 篇 yanhua liu
  • 8 篇 chen yuzhong
  • 8 篇 wu ling
  • 7 篇 huang fangwan
  • 7 篇 dong chen

语言

  • 369 篇 英文
  • 14 篇 中文
  • 7 篇 其他
检索条件"机构=Fujian Key Laboratory of Network Computing and Intelligent Information Processing"
385 条 记 录,以下是371-380 订阅
排序:
DPANet: Depth potentiality-aware gated attention network for RGB-D salient object detection
arXiv
收藏 引用
arXiv 2020年
作者: Chen, Zuyao Cong, Runmin Xu, Qianqian Huang, Qingming The School of Computer Science and Technology University of Chinese Academy of Sciences Beijing100190 China The Institute of Information Science Beijing Jiaotong University Beijing100044 China The Beijing Key Laboratory of Advanced Information Science and Network Technology Beijing100044 China The Department of Computer Science City University of Hong Kong Hong Kong Hong Kong The Key Laboratory of Intelligent Information Processing Institute of Computing Technology Chinese Academy of Sciences Beijing100190 China University of Chinese Academy of Sciences Beijing101408 China Peng Cheng Laboratory Shenzhen518055 China
There are two main issues in RGB-D salient object detection: (1) how to effectively integrate the complementarity from the cross-modal RGB-D data;(2) how to prevent the contamination effect from the unreliable depth m... 详细信息
来源: 评论
CIR-Net: Cross-modality Interaction and Refinement for RGB-D Salient Object Detection
arXiv
收藏 引用
arXiv 2022年
作者: Cong, Runmin Lin, Qinwei Zhang, Chen Li, Chongyi Cao, Xiaochun Huang, Qingming Zhao, Yao Institute of Information Science Beijing Jiaotong University Beijing100044 China Beijing Key Laboratory of Advanced Information Science and Network Technology Beijing100044 China School of Computer Science and Engineering Nanyang Technological University Singapore School of Cyber Science and Technology Shenzhen Campus Sun Yat-sen University 518107 China School of Computer Science and Technology University of Chinese Academy of Sciences Beijing101408 China Key Laboratory of Intelligent Information Processing Institute of Computing Technology Chinese Academy of Sciences Beijing100190 China Peng Cheng Laboratory Shenzhen518055 China
Focusing on the issue of how to effectively capture and utilize cross-modality information in RGB-D salient object detection (SOD) task, we present a convolutional neural network (CNN) model, named CIR-Net, based on t... 详细信息
来源: 评论
A Wideband Circularly Polarized Folded Transmitarray Antenna With Linearly Polarized Feed
A Wideband Circularly Polarized Folded Transmitarray Antenna...
收藏 引用
IEEE International Conference on Electronic information and Communication Technology (ICEICT)
作者: Xiangdong Sun Xulong Guo Yin Li Yongliang Zhang Yingsong Li School of Electronic Information Engineering Inner Mongolia University Hohhot China Inner Mongolia Branch of National Computer Network Emergency Response Technical Team/Coordination Center of China Inner Mongolia University Hohhot China Peng Cheng Laboratory Shenzhen China School of Transportation Institute Inner Mongolia University Hohhot China Key Laboratory of Intelligent Computing and Signal Processing Ministry of Education Anhui University China
A low-profile, high-gain, wideband circularly polarized folded transmitarray antenna (CPFTA) is proposed, and a polarization-selective linear-to-circular polarization (LP-CP) conversion element is introduced. The CPFT...
来源: 评论
A new logistic map based chaotic biogeography-based optimization approach for cluster analysis
A new logistic map based chaotic biogeography-based optimiza...
收藏 引用
IEEE International Conference on Progress in Informatics and computing (PIC)
作者: Shui-Hua Wang Hui-Min Lu Yu-Jie Li Yang Wang Zhi-Min Chen Yu-Min Wei Wen-Juan Jia Fang-Yuan Liu Yu-Dong Zhang Hunan Provincial Key Laboratory of Network Investigational Technology Hunan Policy Academy Changsha Hunan China School of Computer Science and Technology Nanjing Normal University Nanjing Jiangsu China Department of Electrical Engineering CUNY New York NY USA Department of Mechanical and Control Engineering Kyushu Institute of Technology Fukuoka Prefecture Japan School of Information Engineering Yangzhou University Yangzhou Jiangsu China School of Physics and Electronic Engineering Taizhou University Taizhou Zhejiang China School of Electronic Information Shanghai Dianji University Shanghai China School of Energy and Mechanical Engineering Nanjing Normal University Nanjing Jiangsu China Key Laboratory of Intelligent Computing and Information Processing in Fujian Provincial University Quanzhou Normal University Quanzhou Fujian China
Cluster analysis is important in scientific and industrial fields. In this study, we proposed a novel chaotic biogeography-based optimization (CBBO) method, and applied it in centroid-based clustering methods. The res... 详细信息
来源: 评论
Research on intelligent recognition and encryption algorithm of network big data image
收藏 引用
IOP Conference Series: Earth and Environmental Science 2021年 第4期632卷
作者: Jubao Qu School of mathematics and computer Wuyi University Fujian 354300 China The Key Laboratory of Cognitive Computing and Intelligent Information Processing of Fujian Education Institutions (Wuyi University) Wuyi University Wuyishan Fujian 354300 China
In view of the identification and encryption of massive network information in the era of big data, this paper proposes to use intelligent image recognition technology to analyze the required information, then classif...
来源: 评论
Learning robust and discriminative low-rank representations for face recognition with occlusion
收藏 引用
Pattern Recognition 2017年 66卷 129-143页
作者: Guangwei Gao Jian Yang Xiao-Yuan Jing Fumin Shen Wankou Yang Dong Yue Institute of Advanced Technology Nanjing University of Posts and Telecommunications Nanjing China Jiangsu Engineering Laboratory of Big Data Analysis and Control for active distribution network Nanjing University of Posts and Telecommunications Nanjing China Fujian Provincial Key Laboratory of Information Processing and Intelligent Control (Minjiang University) Fuzhou China School of Computer Science and Engineering Nanjing University of Science and Technology Nanjing China School of Automation Nanjing University of Posts and Telecommunications Nanjing China School of Computer Science and Engineering University of Electronic Science and Technology of China Chengdu China School of Automation Southeast University Nanjing China
For robust face recognition tasks, we particularly focus on the ubiquitous scenarios where both training and testing images are corrupted due to occlusions. Previous low-rank based methods stacked each error image int... 详细信息
来源: 评论
Global-and-Local Collaborative Learning for Co-Salient Object Detection
arXiv
收藏 引用
arXiv 2022年
作者: Cong, Runmin Yang, Ning Li, Chongyi Fu, Huazhu Zhao, Yao Huang, Qingming Kwong, Sam The Institute of Information Science Beijing Jiaotong University Beijing100044 China The Beijing Key Laboratory of Advanced Information Science and Network Technology Beijing100044 China The Department of Computer Science City University of Hong Kong Hong Kong The School of Computer Science and Engineering Nanyang Technological University Singapore A*STAR Singapore The School of Computer Science and Technology University of Chinese Academy of Sciences Beijing101408 China University of Chinese Academy of Sciences Beijing101408 China The Key Laboratory of Intelligent Information Processing Institute of Computing Technology Chinese Academy of Sciences Beijing100190 China Peng Cheng Laboratory Shenzhen518055 China The City University of Hong Kong Shenzhen Research Institute Shenzhen51800 China
The goal of co-salient object detection (CoSOD) is to discover salient objects that commonly appear in a query group containing two or more relevant images. Therefore, how to effectively extract inter-image correspond... 详细信息
来源: 评论
PUGAN: Physical Model-Guided Underwater Image Enhancement Using GAN with Dual-Discriminators
arXiv
收藏 引用
arXiv 2023年
作者: Cong, Runmin Yang, Wenyu Zhang, Wei Li, Chongyi Guo, Chun-Le Huang, Qingming Kwong, Sam Institute of Information Science Beijing Jiaotong University Beijing100044 China School of Control Science and Engineering Shandong University Jinan250061 China Key Laboratory of Machine Intelligence and System Control Ministry of Education Jinan250061 China Beijing Key Laboratory of Advanced Information Science and Network Technology Beijing100044 China College of Computer Science Nankai University Tianjin300350 China School of Computer Science and Technology University of Chinese Academy of Sciences Beijing101408 China Key Laboratory of Intelligent Information Processing Institute of Computing Technology Chinese Academy of Sciences Beijing100190 China Peng Cheng Laboratory Shenzhen518055 China Department of Computer Science City University of Hong Kong Hong Kong City University of Hong Kong Shenzhen Research Institute Shenzhen51800 China
Due to the light absorption and scattering induced by the water medium, underwater images usually suffer from some degradation problems, such as low contrast, color distortion, and blurring details, which aggravate th... 详细信息
来源: 评论
Does Thermal Really Always Matter for RGB-T Salient Object Detection?
arXiv
收藏 引用
arXiv 2022年
作者: Cong, Runmin Zhang, Kepu Zhang, Chen Zheng, Feng Zhao, Yao Huang, Qingming Kwong, Sam The Institute of Information Science Beijing Jiaotong University Beijing100044 China The Beijing Key Laboratory of Advanced Information Science and Network Technology Beijing100044 China The Department of Computer Science City University of Hong Kong China The Department of Computer Science and Technology Southern University of Science and Technology Shenzhen518055 China The Research Institute of Trustworthy Autonomous Systems Shenzhen518055 China The School of Computer Science and Technology University of Chinese Academy of Sciences Beijing101408 China The Key Laboratory of Intelligent Information Processing Institute of Computing Technology Chinese Academy of Sciences Beijing100190 China Peng Cheng Laboratory Shenzhen518055 China The City University of Hong Kong Shenzhen Research Institute Shenzhen51800 China
In recent years, RGB-T salient object detection (SOD) has attracted continuous attention, which makes it possible to identify salient objects in environments such as low light by introducing thermal image. However, mo... 详细信息
来源: 评论
Consensus algorithms for biased labeling in crowdsourcing
收藏 引用
information Sciences 2017年 382-383卷 254-273页
作者: Jing Zhang Victor S. Sheng Qianmu Li Jian Wu Xindong Wu School of Computer Science and Engineering Nanjing University of Science and Technology Nanjing 210094 P. R. China Key Laboratory of Image and Video Understanding for Social Safety Nanjing University of Science and Technology Nanjing 210094 P. R. China Department of Computer Science University of Central Arkansas Conway AR 72035 USA Jiangsu Engineering Center of Network Monitoring Nanjing University of Information Science and Technology Nanjing 210044 P. R. China Institute of Intelligent Information Processing and Application Soochow University Suzhou 215006 P. R. China School of Computing and Informatics University of Louisiana at Lafayette LA 70504 USA
Although it has become an accepted lay view that when labeling objects through crowdsourcing systems, non-expert annotators often exhibit biases, this argument lacks sufficient evidential observation and systematic em...
来源: 评论