Aboard current ships, such as the DDG 51, engineering control and damage control activities are manpower intensive. It is anticipated that, for future combatants, the workload demand arising from operation of systems ...
详细信息
Aboard current ships, such as the DDG 51, engineering control and damage control activities are manpower intensive. It is anticipated that, for future combatants, the workload demand arising from operation of systems under conditions of normal steaming and during casualty response will need to be markedly reduced via automated monitoring, autonomous control, and other technology initiatives. Current DDG 51 class ships can be considered as a manpower baseline and under Condition III typical engineering control involves seven to eight watchstanders at manned stations in the Central Control Station, the engine rooms and other machinery spaces. In contrast to this manning level, initiatives such as DD 21 and the integrated engineering plant (IEP) envision a partnership between the operator and the automation system, with more and more of the operator's functions being shifted to the automation system as manning levels decrease. This paper describes some human systems integration studies of workload demand reduction and, consequently, manning reduction that can be achieved due to application of several advanced technology concepts. Advanced system concept studies in relation to workload demand are described and reviewed including. Piecemeal applications of diverse automation and remote control technology concepts to selected high driver tasks in current DDG 51 activities. development of the reduced ship's crew by virtual presence system that will provide automated monitoring and display to operators of machinery health, compartment conditions, and personnel health. The IEP envisions the machinery control system as a provider of resources that are used by various consumers around the ship. Resource needs and consumer priorities are at all times dependent upon the ship's current mission and the availability of equipment pawnbrokers.
A variable-speed power conversion system is considered where a permanent magnet generator (PMG) driven by an IC engine supplies power to an electronic inverter. The AC voltage from the PMG is typically diode-rectified...
详细信息
A variable-speed power conversion system is considered where a permanent magnet generator (PMG) driven by an IC engine supplies power to an electronic inverter. The AC voltage from the PMG is typically diode-rectified into a DC link, which is utilized by the inverter to produce constant-frequency, constant-voltage output. These "electronic gensets" can be smaller, lighter and have higher performance than their fixed-speed counterparts with synchronous alternators under field control. Such attributes are attractive for mobile and stand-by power applications. The added flexibility of a variable-speed genset system must be met with suitable techniques for directing the speed at which the engine should operate for a given electrical load. Constraints on torque, speed, and DC link voltage must additionally be met. This paper reviews conventional methods, and presents a new technique utilizing the operating power of the system as an input to a power-speed "map" for the system to follow. Experimental results are included.
This paper provides a context within which the role of human factors engineering (HFE) for Naval ship design may be understood. HFE is defined and its history as part of engineering design teams is traced. The role of...
This paper provides a context within which the role of human factors engineering (HFE) for Naval ship design may be understood. HFE is defined and its history as part of engineering design teams is traced. The role of HFE in ship systems design is defined, and the HFE Technology for Ships program, managed by SEA 061R, is described. The rationale for inclusion of HFE in the design process is presented, the methodology whereby it is incorporated into the design process is detailed, methodology to assess the application of HFE is outlined, and the benefits that will accrue as a result of inclusion of HFE considerations in the design process are documented. The counterpoint to inclusion is illustrated through instances of design-induced human errors. A specific application of HFE in the acquisition process is illustrated through use of the Landing Craft, Air Cushion HFE program plan. The difficulties which may be encountered as the size of the target system expands are described. Potential roadblocks to the required incorporation of HFE are examined for their source and possible ameliorative steps.
暂无评论