咨询与建议

限定检索结果

文献类型

  • 57 篇 期刊文献
  • 24 篇 会议
  • 1 册 图书

馆藏范围

  • 82 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 57 篇 工学
    • 48 篇 计算机科学与技术...
    • 43 篇 软件工程
    • 10 篇 信息与通信工程
    • 7 篇 光学工程
    • 7 篇 电气工程
    • 7 篇 控制科学与工程
    • 5 篇 土木工程
    • 5 篇 安全科学与工程
    • 4 篇 建筑学
    • 3 篇 测绘科学与技术
    • 3 篇 网络空间安全
    • 2 篇 机械工程
    • 2 篇 电子科学与技术(可...
    • 2 篇 化学工程与技术
    • 2 篇 生物工程
    • 1 篇 力学(可授工学、理...
  • 25 篇 理学
    • 14 篇 数学
    • 6 篇 生物学
    • 4 篇 统计学(可授理学、...
    • 3 篇 物理学
    • 2 篇 化学
    • 2 篇 系统科学
  • 15 篇 管理学
    • 11 篇 管理科学与工程(可...
    • 6 篇 图书情报与档案管...
    • 5 篇 工商管理
  • 3 篇 经济学
    • 3 篇 应用经济学
  • 3 篇 医学
    • 3 篇 基础医学(可授医学...
    • 3 篇 临床医学
    • 2 篇 公共卫生与预防医...
  • 2 篇 教育学
    • 2 篇 教育学

主题

  • 4 篇 signal to noise ...
  • 3 篇 semantic segment...
  • 3 篇 image segmentati...
  • 3 篇 accuracy
  • 3 篇 mesh generation
  • 2 篇 deep neural netw...
  • 2 篇 budget control
  • 2 篇 contrastive lear...
  • 2 篇 graph neural net...
  • 2 篇 image coding
  • 2 篇 predictive model...
  • 2 篇 differential pri...
  • 2 篇 semantics
  • 2 篇 biomedical imagi...
  • 2 篇 federated learni...
  • 1 篇 urban complexity
  • 1 篇 image enhancemen...
  • 1 篇 superpixels
  • 1 篇 protein engineer...
  • 1 篇 learning systems

机构

  • 44 篇 college of compu...
  • 14 篇 s-lab nanyang te...
  • 6 篇 nanyang technolo...
  • 5 篇 sensetime resear...
  • 5 篇 tencent ai lab
  • 4 篇 college of compu...
  • 4 篇 college of compu...
  • 4 篇 school of electr...
  • 4 篇 rolls-royce@ntu ...
  • 4 篇 school of comput...
  • 4 篇 ucas-terminus ai...
  • 3 篇 the college of c...
  • 3 篇 shanghai ai labo...
  • 2 篇 college of compu...
  • 2 篇 school of eic hu...
  • 2 篇 shanghai ai lab
  • 2 篇 show lab nationa...
  • 2 篇 school of electr...
  • 2 篇 college of compu...
  • 2 篇 school of comput...

作者

  • 8 篇 niyato dusit
  • 5 篇 tao dacheng
  • 5 篇 he ying
  • 5 篇 liu ziwei
  • 4 篇 zhao peilin
  • 4 篇 chen guohao
  • 4 篇 lu shijian
  • 4 篇 niu shuaicheng
  • 3 篇 qian chen
  • 3 篇 xu xiang
  • 3 篇 zhang mengmi
  • 3 篇 wei xian lim
  • 3 篇 hou fei
  • 3 篇 chen kai
  • 3 篇 kong lingdong
  • 3 篇 shao ling
  • 3 篇 kong jiayi
  • 3 篇 xu baixin
  • 3 篇 luo jun
  • 3 篇 wu pengcheng

语言

  • 52 篇 其他
  • 30 篇 英文
检索条件"机构=Generative AI Lab College of Computing and Data Science Nanyang Technological University"
82 条 记 录,以下是1-10 订阅
排序:
Do Not DeepFake Me: Privacy-Preserving Neural 3D Head Reconstruction Without Sensitive Images  39
Do Not DeepFake Me: Privacy-Preserving Neural 3D Head Recons...
收藏 引用
39th Annual AAai Conference on Artificial Intelligence, AAai 2025
作者: Kong, Jiayi Song, Xurui Huai, Shuo Xu, Baixin Luo, Jun He, Ying S-Lab Nanyang Technological University Singapore College of Computing and Data Science Nanyang Technological University Singapore
While 3D head reconstruction is widely used for modeling, existing neural reconstruction approaches rely on high-resolution multi-view images, posing notable privacy issues. Individuals are particularly sensitive to f... 详细信息
来源: 评论
Enhancing Protein Language Model With Feature Integration for Anticancer Peptide Prediction
Enhancing Protein Language Model With Feature Integration fo...
收藏 引用
2024 IEEE-EMBS International Conference on Biomedical and Health Informatics, BHI 2024
作者: Binte Sayuti, Tiara Natasha Cheng, Shen Ajith, Santhisenan Bin Abdul Samad, Abdul Hadi Rajapakse, Jagath C. College of Computing and Data Science Nanyang Technological University Health Informatics Lab Singapore College of Computing and Data Science Nanyang Technological University Singapore School of Electrical and Electronic Engineering Nanyang Technological University Singapore
In the fight against cancer, anticancer peptides (ACP) hold promising therapeutic potential due to their selective cytotoxicity and lower side effects compared to traditional treatments. However, identifying novel ACP... 详细信息
来源: 评论
Uncertainty-Calibrated Test-Time Model Adaptation without Forgetting
收藏 引用
IEEE Transactions on Pattern Analysis and Machine Intelligence 2025年 PP卷 1-14页
作者: Tan, Mingkui Chen, Guohao Wu, Jiaxiang Zhang, Yifan Chen, Yaofo Zhao, Peilin Niu, Shuaicheng South China University of Technology School of Software Engineering China Pazhou Laboratory Guangzhou China XVERSE China National University of Singapore School of Computing Singapore Tencent AI Lab China Nanyang Technological University College of Computing and Data Science Singapore
Test-time adaptation (TTA) seeks to tackle potential distribution shifts between training and testing data by adapting a given model w.r.t. any testing sample. This task is particularly important when the test environ... 详细信息
来源: 评论
Historical Test-time Prompt Tuning for Vision Foundation Models  38
Historical Test-time Prompt Tuning for Vision Foundation Mod...
收藏 引用
38th Conference on Neural Information Processing Systems, NeurIPS 2024
作者: Zhang, Jingyi Huang, Jiaxing Zhang, Xiaoqin Shao, Ling Lu, Shijian College of Computing and Data Science Nanyang Technological University Singapore College of Computer Science and Technology Zhejiang University of Technology China UCAS-Terminus AI Lab University of Chinese Academy of Sciences China
Test-time prompt tuning, which learns prompts online with unlabelled test samples during the inference stage, has demonstrated great potential by learning effective prompts on-the-fly without requiring any task-specif...
来源: 评论
Finite Volume Features, Global Geometry Representations, and Residual Training for Deep Learning-based CFD Simulation  41
Finite Volume Features, Global Geometry Representations, and...
收藏 引用
41st International Conference on Machine Learning, ICML 2024
作者: Jessica, Loh Sher En Arafat, Naheed Anjum Lim, Wei Xian Chan, Wai Lee Kong, Adams Wai Kin Rolls-Royce@NTU Corporate Lab Nanyang Technological University Singapore College of Computing and Data Science Nanyang Technological University Singapore School of Mechanical & Aerospace Engineering Nanyang Technological University Singapore
Computational fluid dynamics (CFD) simulation is an irreplaceable modelling step in many engineering designs, but it is often computationally expensive. Some graph neural network (GNN)based CFD methods have been propo... 详细信息
来源: 评论
Flow Snapshot Neurons in Action: Deep Neural Networks Generalize to Biological Motion Perception  38
Flow Snapshot Neurons in Action: Deep Neural Networks Genera...
收藏 引用
38th Conference on Neural Information Processing Systems, NeurIPS 2024
作者: Han, Shuangpeng Wang, Ziyu Zhang, Mengmi College of Computing and Data Science Nanyang Technological University Singapore Singapore Show Lab National University of Singapore Singapore
Biological motion perception (BMP) refers to humans' ability to perceive and recognize the actions of living beings solely from their motion patterns, sometimes as minimal as those depicted on point-light displays...
来源: 评论
Test-Time Model Adaptation with Only Forward Passes  41
Test-Time Model Adaptation with Only Forward Passes
收藏 引用
41st International Conference on Machine Learning, ICML 2024
作者: Niu, Shuaicheng Miao, Chunyan Chen, Guohao Wu, Pengcheng Zhao, Peilin College of Computing and Data Science Nanyang Technological University Singapore Joint NTU-WeBank Research Centre on Fintech Singapore Singapore Tencent AI Lab Shenzhen China
Test-time adaptation has proven effective in adapting a given trained model to unseen test samples with potential distribution shifts. However, in real-world scenarios, models are usually deployed on resource-limited ... 详细信息
来源: 评论
A THEORETICAL PERSPECTIVE: HOW TO PREVENT MODEL COLLAPSE IN SELF-CONSUMING TRaiNING LOOPS
arXiv
收藏 引用
arXiv 2025年
作者: Fu, Shi Wang, Yingjie Chen, Yuzhu Tian, Xinmei Tao, Dacheng Generative AI Lab College of Computing and Data Science Nanyang Technological University Singapore639798 Singapore University of Science and Technology of China Hefei China
High-quality data is essential for training large generative models, yet the vast reservoir of real data available online has become nearly depleted. Consequently, models increasingly generate their own data for furth... 详细信息
来源: 评论
generative Adversarial Learning for Semi-supervised Retinal Layer Segmentation in OCT Images
Generative Adversarial Learning for Semi-supervised Retinal ...
收藏 引用
2024 IEEE-EMBS International Conference on Biomedical and Health Informatics, BHI 2024
作者: Lin Ong, Charlene Zhi Bakar Ali, Asad Abu Rajapakse, Jagath C Msd International GmbH Singapore Singapore College of Computing and Data Science Nanyang Technological University Health Informatics Lab Singapore Singapore
It is often challenging to obtain large number of labeled data for retinal layer segmentation in optical coherence tomography scans due to the need for expert ophthalmologists. On the other hand, huge quantities of un... 详细信息
来源: 评论
Self-Bootstrapping for Versatile Test-Time Adaptation
arXiv
收藏 引用
arXiv 2025年
作者: Niu, Shuaicheng Chen, Guohao Zhao, Peilin Wang, Tianyi Wu, Pengcheng Shen, Zhiqi College of Computing and Data Science Nanyang Technological University Singapore Tencent AI Lab Shenzhen China
In this paper, we seek to develop a versatile test-time adaptation (TTA) objective for a variety of tasks — classification and regression across image-, object-, and pixel-level predictions. We achieve this through a... 详细信息
来源: 评论