咨询与建议

限定检索结果

文献类型

  • 680 篇 期刊文献
  • 665 篇 会议
  • 10 册 图书

馆藏范围

  • 1,355 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 850 篇 工学
    • 494 篇 计算机科学与技术...
    • 430 篇 软件工程
    • 280 篇 控制科学与工程
    • 157 篇 信息与通信工程
    • 143 篇 生物工程
    • 112 篇 生物医学工程(可授...
    • 99 篇 机械工程
    • 97 篇 光学工程
    • 94 篇 电气工程
    • 66 篇 电子科学与技术(可...
    • 58 篇 仪器科学与技术
    • 46 篇 交通运输工程
    • 38 篇 建筑学
    • 36 篇 土木工程
    • 35 篇 安全科学与工程
    • 31 篇 化学工程与技术
    • 23 篇 动力工程及工程热...
  • 419 篇 理学
    • 197 篇 数学
    • 149 篇 生物学
    • 118 篇 物理学
    • 74 篇 统计学(可授理学、...
    • 58 篇 系统科学
    • 33 篇 化学
  • 181 篇 管理学
    • 117 篇 管理科学与工程(可...
    • 73 篇 图书情报与档案管...
    • 46 篇 工商管理
  • 78 篇 医学
    • 71 篇 临床医学
    • 57 篇 基础医学(可授医学...
    • 41 篇 药学(可授医学、理...
  • 30 篇 法学
    • 29 篇 社会学
  • 15 篇 农学
  • 13 篇 教育学
  • 11 篇 经济学
  • 2 篇 艺术学
  • 1 篇 文学
  • 1 篇 军事学

主题

  • 34 篇 training
  • 31 篇 accuracy
  • 29 篇 robots
  • 29 篇 feature extracti...
  • 27 篇 deep learning
  • 27 篇 visualization
  • 27 篇 semantics
  • 24 篇 machine learning
  • 22 篇 image segmentati...
  • 21 篇 reinforcement le...
  • 21 篇 cameras
  • 21 篇 robot sensing sy...
  • 20 篇 three-dimensiona...
  • 20 篇 shape
  • 19 篇 robustness
  • 18 篇 navigation
  • 18 篇 trajectory
  • 18 篇 computer vision
  • 16 篇 planning
  • 16 篇 optimization

机构

  • 53 篇 shenzhen institu...
  • 29 篇 shanghai key lab...
  • 29 篇 department of el...
  • 24 篇 shanghai enginee...
  • 22 篇 school of comput...
  • 18 篇 institute of art...
  • 17 篇 horizon robotics
  • 16 篇 school of comput...
  • 16 篇 national enginee...
  • 14 篇 robotics institu...
  • 13 篇 graduate school ...
  • 13 篇 college of compu...
  • 13 篇 institutes for r...
  • 12 篇 school of comput...
  • 12 篇 school of roboti...
  • 12 篇 engineering rese...
  • 12 篇 peng cheng labor...
  • 12 篇 state key labora...
  • 11 篇 division of robo...
  • 11 篇 school of comput...

作者

  • 36 篇 zhang wenqiang
  • 22 篇 shuzhi sam ge
  • 20 篇 ge shuzhi sam
  • 18 篇 wei he
  • 17 篇 myungjin cho
  • 17 篇 shen linlin
  • 16 篇 min-chul lee
  • 16 篇 hyun-woo kim
  • 15 篇 yang kailun
  • 15 篇 chen zhaoyu
  • 15 篇 hong lingyi
  • 14 篇 jiang kaixun
  • 12 篇 huang jianwei
  • 12 篇 wang yan
  • 12 篇 guo pinxue
  • 12 篇 jayakody dushant...
  • 12 篇 cho myungjin
  • 12 篇 kim hyun-woo
  • 12 篇 lee min-chul
  • 12 篇 li jinglun

语言

  • 1,213 篇 英文
  • 127 篇 其他
  • 15 篇 中文
检索条件"机构=Geometry Robotics and the School of Computer Science and Technology"
1355 条 记 录,以下是701-710 订阅
排序:
CertainOdom: Uncertainty Weighted Multi-task Learning Model for LiDAR Odometry Estimation
CertainOdom: Uncertainty Weighted Multi-task Learning Model ...
收藏 引用
IEEE International Conference on robotics and Biomimetics
作者: Leyuan Sun Guanqun Ding Yusuke Yoshiyasu Fumio Kanehiro Department of Intelligent and Mechanical Interaction Systems Graduate School of Science and Technology University of Tsukuba Tsukuba Ibaraki Japan CNRS-AIST Joint Robotics Laboratory (JRL) IRL National Institute of Advanced Industrial Science and Technology (AIST). Digital Architecture Research Center (DARC) National Institute of Advanced Industrial Science and Technology (AIST) Tokyo Japan Computer Vision Research Team Artificial Intelligence Research Center (AIRC) National Institute of Advanced Industrial Science and Technology (AIST) Japan
As a basic and indispensable module, LiDAR odom-etry estimation is widely used in robotics. In recent years, learning-based modeling approaches for odometry estimation have been validated to be feasible. However, it i... 详细信息
来源: 评论
Cubic boron arsenide: An emerging semiconductor with exceptional thermal conductivity and high carrier mobility
收藏 引用
Matter 2025年 第5期8卷
作者: Yue, Shuai Tian, Fei Song, Bai Zhong, Yangguang Bao, Jiming Liu, Xinfeng CAS Key Laboratory of Standardization and Measurement for Nanotechnology National Center for Nanoscience and Technology Beijing100190 China School of Materials Science and Engineering Sun Yat-sen University Guangdong Guangzhou510006 China Department of Energy and Resources Engineering and Department of Advanced Manufacturing and Robotics Peking University Beijing100871 China Department of Electrical and Computer Engineering and Texas Center for Superconductivity University of Houston HoustonTX77204 United States University of Chinese Academy of Sciences Beijing100049 China College of Materials Science and Engineering Hunan University Hunan Changsha410082 China
Over the past decade, cubic boron arsenide (BAs) has emerged as a highly promising semiconductor owing to its extraordinary thermal conductivity (1,200 W/m·K) and high ambipolar mobility (1,600 cm2/V·s). Thi... 详细信息
来源: 评论
A Distributed Framework for Deep Reinforcement Learning by Consensus
A Distributed Framework for Deep Reinforcement Learning by C...
收藏 引用
Chinese Control and Decision Conference, CCDC
作者: Bo Liu Shuang Zhu Peng Sun Qisheng Huang Zhengtao Ding Shenzhen Institute of Artificial Intelligence and Robotics for Society Shenzhen China PowerChina Huadong Engineering Corporation Limited Hangzhou China College of Computer Science and Electronic Engineering Hunan University Changsha China School of Mechanical Engineering and Automation Harbin Institute of Technology Shenzhen Shenzhen China Department of Electrical and Electronic Engineering University of Manchester Manchester UK
This paper proposes a distributed training framework for deep reinforcement learning algorithms to address large-scale problems with privacy protection. First, we design a hierarchical decentralized communication topo...
来源: 评论
PVPUFormer: Probabilistic Visual Prompt Unified Transformer for Interactive Image Segmentation
arXiv
收藏 引用
arXiv 2023年
作者: Zhang, Xu Yang, Kailun Lin, Jiacheng Yuan, Jin Li, Zhiyong Li, Shutao College of Computer Science and Electronic Engineering Hunan University Changsha410082 China School of Robotics The National Engineering Research Center of Robot Visual Perception and Control Technology Hunan University Changsha410082 China College of Electrical and Information Engineering The Key Laboratory of Visual Perception and Artificial Intelligence of Hunan Province Hunan University Changsha410082 China
Integration of diverse visual prompts like clicks, scribbles, and boxes in interactive image segmentation significantly facilitates users’ interaction as well as improves interaction efficiency. However, existing stu... 详细信息
来源: 评论
SOFT GRIPPING: SPECIFYING FOR TRUSTWORTHINESS
arXiv
收藏 引用
arXiv 2023年
作者: Abeywickrama, Dhaminda B. Le, Nguyen Hao Chance, Greg Winter, Peter D. Manzini, Arianna Partridge, Alix J. Ives, Jonathan Downer, John Deacon, Graham Rossiter, Jonathan Eder, Kerstin Windsor, Shane Department of Computer Science University of Bristol United Kingdom Department of Engineering Mathematics University of Bristol United Kingdom School of Sociology University of Bristol United Kingdom Bristol Medical School University of Bristol United Kingdom Department of Mechanical Engineering University of Bristol United Kingdom Robotics Research Team Ocado Technology United Kingdom Department of Aerospace Engineering University of Bristol United Kingdom
Soft robotics is an emerging technology in which engineers create flexible devices for use in a variety of applications. In order to advance the wide adoption of soft robots, ensuring their trustworthiness is essentia... 详细信息
来源: 评论
SubZero: Subspace Zero-Shot MRI Reconstruction
arXiv
收藏 引用
arXiv 2023年
作者: Yu, Heng Arefeen, Yamin Bilgic, Berkin The Robotics Institute Carnegie Mellon University PittsburghPA United States Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology CambridgeMA United States Athinoula A. Martinos Center for Biomedical Imaging Massachusetts General Hospital CharlestownMA United States Department of Radiology Harvard Medical School BostonMA United States
Recently introduced zero-shot self-supervised learning (ZS-SSL) has shown potential in accelerated MRI in a scan-specific scenario, which enabled high quality reconstructions without access to a large training dataset... 详细信息
来源: 评论
Few-shot learning based histopathological image classification of colorectal cancer
收藏 引用
Intelligent Medicine 2024年 第4期4卷 256-267页
作者: Rui Li Xiaoyan Li Hongzan Sun Jinzhu Yang Md Rahaman Marcin Grzegozek Tao Jiang Xinyu Huang Chen Li Key Laboratory of Intelligent Computing in Medical Image Ministry of EducationNortheastern UniversityShenyangLiaoning 110167China Cancer Hospital China Medical UniversityShenyangLiaoning 110122China Shengjing Hospital China Medical UniversityShenyang.Liaoning 110000China Institute for Medical Informatics University of LuebeckGermany Department of Knowledge Engineering University of Economics in KatowicePoland School of Intelligent Medicine Chengdu University of Traditional Chinese MedicineChengduSichuan 610075China International Joint Institute of Robotics and Intelligent Systems Chengdu University of Information TechnologyChengduSichuan 610225China School of Computer Science and Engineering University of New South WalesSydneyNSW 2052Australia
Background Colorectal cancer is a prevalent and deadly disease worldwide,posing significant diagnostic *** histopathologic image classification is often inefficient and *** some histopathologists use computer-aided di... 详细信息
来源: 评论
Research and optimization of conflict search algorithm for multi-agent path planning based on incremental heuristic  2
Research and optimization of conflict search algorithm for m...
收藏 引用
2nd International Conference on computer Vision and Data Mining, ICVDM 2021
作者: Li, Yang Wang, Jun Zhang, Hualiang School of Computer Science Shenyang University of Chemical Technology Shenyang110142 China Key Laboratory of Networked Control Systems Chinese Academy of Sciences Shenyang110016 China Shenyang Institute of Automation Chinese Academy of Sciences Shenyang110016 China Institutes for Robotics and Intelligent Manufacturing Chinese Academy of Sciences Shenyang110169 China
Conflict Based Search(CBS) is used for multi-agent Pathfinding (MAPF) to enable each Agent to reach the target node. The CBS algorithm uses the heuristic algorithm A* search to calculate the MAPF solution, and the pat... 详细信息
来源: 评论
Exploiting the Intrinsic Neighborhood Semantic Structure for Domain Adaptation in EEG-based Emotion Recognition
收藏 引用
IEEE Transactions on Affective Computing 2025年
作者: Yang, Yi Wang, Ze Song, Yu Jia, Ziyu Wang, Boyu Jung, Tzyy-Ping Wan, Feng Macau University of Science and Technology Macao Centre for Mathematical Sciences Respiratory Disease AI Laboratory on Epidemic Intelligence and Medical Big Data Instrument Applications Faculty of Innovation Engineering 999078 China Tianjin University of Technology School of Electrical Engineering and Automation Tianjin Key Laboratory of New Energy Power Conversion Transmission and Intelligent Control Tianjin300384 China Chinese Academy of Sciences Beijing Key Laboratory of Brainnetome and Brain-Computer Interface and Brainnetome Center Institute of Automation Beijing100045 China Western University Department of Computer Science Brain Mind Institute LondonONN6A 3K7 Canada University of California at San Diego Swartz Center for Computational Neuroscience Institute for Neural Computation La Jolla CA92093 United States University of Macau Department of Electrical and Computer Engineering Faculty of Science and Technology China University of Macau Centre for Cognitive and Brain Sciences Centre for Artificial Intelligence and Robotics Institute of Collaborative Innovation 999078 China
Due to the inherent non-stationarity and individual differences present in electroencephalogram (EEG) signals, developing a generalizable model that performs well on new subjects is challenging in EEG-based emotion re... 详细信息
来源: 评论
Is out-of-distribution detection learnable?  22
Is out-of-distribution detection learnable?
收藏 引用
Proceedings of the 36th International Conference on Neural Information Processing Systems
作者: Zhen Fang Yixuan Li Jie Lu Jiahua Dong Bo Han Feng Liu Australian Artificial Intelligence Institute University of Technology Sydney Department of Computer Sciences University of Wisconsin-Madison State Key Laboratory of Robotics Shenyang Institute of Automation Chinese Academy of Sciences and ETH Zurich Switzerland Department of Computer Science Hong Kong Baptist University Australian Artificial Intelligence Institute University of Technology Sydney and School of Mathematics and Statistics University of Melbourne
Supervised learning aims to train a classifier under the assumption that training and test data are from the same distribution. To ease the above assumption, researchers have studied a more realistic setting: out-of-d...
来源: 评论