咨询与建议

限定检索结果

文献类型

  • 693 篇 期刊文献
  • 668 篇 会议
  • 10 册 图书

馆藏范围

  • 1,371 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 864 篇 工学
    • 502 篇 计算机科学与技术...
    • 428 篇 软件工程
    • 288 篇 控制科学与工程
    • 160 篇 信息与通信工程
    • 144 篇 生物工程
    • 114 篇 生物医学工程(可授...
    • 99 篇 机械工程
    • 97 篇 光学工程
    • 95 篇 电气工程
    • 68 篇 电子科学与技术(可...
    • 58 篇 仪器科学与技术
    • 46 篇 交通运输工程
    • 38 篇 建筑学
    • 36 篇 土木工程
    • 35 篇 安全科学与工程
    • 32 篇 化学工程与技术
    • 24 篇 动力工程及工程热...
  • 424 篇 理学
    • 197 篇 数学
    • 151 篇 生物学
    • 118 篇 物理学
    • 75 篇 统计学(可授理学、...
    • 59 篇 系统科学
    • 34 篇 化学
  • 180 篇 管理学
    • 116 篇 管理科学与工程(可...
    • 73 篇 图书情报与档案管...
    • 44 篇 工商管理
  • 80 篇 医学
    • 73 篇 临床医学
    • 59 篇 基础医学(可授医学...
    • 41 篇 药学(可授医学、理...
  • 30 篇 法学
    • 29 篇 社会学
  • 15 篇 农学
  • 12 篇 教育学
  • 11 篇 经济学
  • 2 篇 艺术学
  • 1 篇 文学
  • 1 篇 军事学

主题

  • 36 篇 training
  • 31 篇 accuracy
  • 30 篇 robots
  • 30 篇 feature extracti...
  • 28 篇 deep learning
  • 28 篇 visualization
  • 27 篇 semantics
  • 24 篇 machine learning
  • 22 篇 reinforcement le...
  • 22 篇 image segmentati...
  • 21 篇 cameras
  • 21 篇 robot sensing sy...
  • 20 篇 three-dimensiona...
  • 20 篇 shape
  • 20 篇 robustness
  • 19 篇 trajectory
  • 18 篇 navigation
  • 18 篇 computer vision
  • 17 篇 planning
  • 16 篇 optimization

机构

  • 52 篇 shenzhen institu...
  • 29 篇 shanghai key lab...
  • 29 篇 department of el...
  • 24 篇 shanghai enginee...
  • 22 篇 school of comput...
  • 18 篇 institute of art...
  • 17 篇 horizon robotics
  • 16 篇 school of comput...
  • 16 篇 national enginee...
  • 14 篇 robotics institu...
  • 13 篇 graduate school ...
  • 13 篇 college of compu...
  • 13 篇 institutes for r...
  • 12 篇 school of comput...
  • 12 篇 school of roboti...
  • 12 篇 engineering rese...
  • 12 篇 peng cheng labor...
  • 12 篇 state key labora...
  • 11 篇 division of robo...
  • 11 篇 school of comput...

作者

  • 35 篇 zhang wenqiang
  • 22 篇 shuzhi sam ge
  • 20 篇 ge shuzhi sam
  • 18 篇 wei he
  • 17 篇 myungjin cho
  • 17 篇 shen linlin
  • 16 篇 min-chul lee
  • 16 篇 hyun-woo kim
  • 15 篇 yang kailun
  • 15 篇 chen zhaoyu
  • 15 篇 hong lingyi
  • 14 篇 jiang kaixun
  • 12 篇 huang jianwei
  • 12 篇 wang yan
  • 12 篇 guo pinxue
  • 12 篇 jayakody dushant...
  • 12 篇 cho myungjin
  • 12 篇 kim hyun-woo
  • 12 篇 lee min-chul
  • 12 篇 li jinglun

语言

  • 1,221 篇 英文
  • 135 篇 其他
  • 15 篇 中文
检索条件"机构=Geometry Robotics and the School of Computer Science and Technology"
1371 条 记 录,以下是941-950 订阅
排序:
Event-based motion segmentation with spatio-temporal graph cuts
arXiv
收藏 引用
arXiv 2020年
作者: Zhou, Yi Gallego, Guillermo Lu, Xiuyuan Liu, Siqi Shen, Shaojie School of Robotics Hunan University Changsha China The Technische Universität Berlin The Einstein Center Digital Future Berlin Germany Robotic Institute The Department of Electronic and Computer Engineering The Hong Kong University of Science and Technology Hong Kong
Identifying independently moving objects is an essential task for dynamic scene understanding. However, traditional cameras used in dynamic scenes may suffer from motion blur or exposure artifacts due to their samplin... 详细信息
来源: 评论
LiDAR Iris for loop-closure detection
arXiv
收藏 引用
arXiv 2019年
作者: Wang, Ying Sun, Zezhou Yang, Jian Kong, Hui School of Computer Science and Engineering Nanjing University of Science and Technology Nanjing Jiangsu China IAAI Nanjing Horizon Robotics
In this paper, a global descriptor for a LiDAR point cloud, called LiDAR Iris, is proposed for fast and accurate loop-closure detection. A binary signature image can be obtained for each point cloud after a couple of ... 详细信息
来源: 评论
Probabilistic learning vector quantization on manifold of symmetric positive definite matrices
arXiv
收藏 引用
arXiv 2021年
作者: Sonna, Fengzhen Tang Feng, Haifeng Tino, Peter Si, Bailu Ji, Daxiong State Key Laboratory of Robotics Shenyang Institute of Automation Chinese Academy of Sciences Shenyang110016 China Institutes for Robotics and Intelligent Manufacturing Chinese Academy of Sciences Shenyang110169 China University of Chinese Academy of Sciences Beijing100049 China School of computer Science University of Birmingham BirminghamB15 2TT United Kingdom School of Systems Science Beijing Normal University Beijing100875 China Institute of Marine Electronics and Intelligent Systems Ocean College Zhejiang University Key Laboratory of Ocean Observation-Imaging Testbed of Zhejiang Province Engineering Research Center of Oceanic Sensing Technology and Equipment Ministry of Education Zhoushan316021 China
In this paper, we develop a new classification method for manifold-valued data in the framework of probabilistic learning vector quantization. In many classification scenarios, the data can be naturally represented by... 详细信息
来源: 评论
Recognition of patient groups with sleep related disorders using bio-signal processing and deep learning
arXiv
收藏 引用
arXiv 2021年
作者: Jarchi, Delaram Andreu-Perez, Javier Kiani, Mehrin Vysata, Oldrich Kuchynka, Jiri Prochazka, Ales Sanei, Saeid Smart Health Technologies Group School of Computer Science and Electronic Engineering University of Essex ColchesterCO4 3SQ United Kingdom Embedded and Intelligent Systems Laboratory School of Computer Science and Electronics University of Essex ColchesterCO4 3SQ United Kingdom Department of Computing and Control Engineering University of Chemistry and Technology in Prague Prague 6166 28 Czech Republic Department of Neurology Faculty of Medicine in Hradec Králové Charles University Hradec Králové500 05 Czech Republic Czech Institute of Informatics Robotics and Cybernetics Czech Technical University in Prague Prague 6160 00 Czech Republic School of Science and Technology Nottingham Trent University NottinghamNG11 8NS United Kingdom
Accurately diagnosing sleep disorders is essential for clinical assessments and treatments. Polysomnography (PSG) has long been used for detection of various sleep disorders. In this research, electrocardiography (ECG... 详细信息
来源: 评论
Dense r-robust formations on lattices
Dense r-robust formations on lattices
收藏 引用
IEEE International Conference on robotics and Automation (ICRA)
作者: Luis Guerrero-Bonilla David Saldaña Vijay Kumar Division of Decision and Control Systems in the School of Electrical Engineering and Computer Science KTH Royal Institute of Technology Stockholm Sweden Autonomous and Intelligent Robotics Laboratory (AIRLab) Lehigh University Bethlehem PA USA GRASP Laboratory University of Pennsylvania
Robot networks are susceptible to fail under the presence of malicious or defective robots. Resilient networks in the literature require high connectivity and large communication ranges, leading to high energy consump... 详细信息
来源: 评论
CCKS 2019 shared task on inter-personal relationship extraction
arXiv
收藏 引用
arXiv 2019年
作者: Wang, Haitao He, Zhengqiu Zhu, Tong Shao, Hao Chen, Wenliang Zhang, Min School of Computer Science and Technology Soochow University China Gowild Robotics Co. Ltd China
The CCKS2019 shared task was devoted to inter-personal relationship extraction. Given two person entities and at least one sentence containing these two entities, participating teams are asked to predict the relations... 详细信息
来源: 评论
Subterranean MAV Navigation based on Nonlinear MPC with Collision Avoidance Constraints ⁎
收藏 引用
IFAC-PapersOnLine 2020年 第2期53卷 9650-9657页
作者: Sina Sharif Mansouri Christoforos Kanellakis Emil Fresk Björn Lindqvist Dariusz Kominiak Anton Koval Pantelis Sopasakis George Nikolakopoulos Robotics Team Department of Computer Electrical and Space Engineering Luleå University of Technology Luleå SE-97187 Sweden WideFind AB Aurorum 1C Luleå SE-97775 Sweden School of Electronics Electrical Engineering and Computer Science (EEECS) Queen’s University Belfast and Centre for Intelligent Autonomous Manufacturing Systems (i-AMS) United Kingdom
Micro Aerial Vehicles (MAVs) navigation in subterranean environments is gaining attention in the field of aerial robotics, however there are still multiple challenges for collision free navigation in such harsh enviro... 详细信息
来源: 评论
Understanding Dynamic Scenes using Graph Convolution Networks
arXiv
收藏 引用
arXiv 2020年
作者: Mylavarapu, Sravan Sandhu, Mahtab Vijayan, Priyesh Madhava Krishna, K. Ravindran, Balaraman Namboodiri, Anoop Center for Visual Information Technology KCIS IIIT Hyderabad India Robotics Research Center KCIS IIIT Hyderabad India School of Computer Science McGill University and Mila Canada Dept. of CSE Robert Bosch Center for Data Science and AI IIT Madras India
We present a novel Multi Relational Graph Convolutional Network (MRGCN) to model on-road vehicle behaviours from a sequence of temporally ordered frames as grabbed by a moving monocular camera. The input to MRGCN is a... 详细信息
来源: 评论
Deep Learning with Skip Connection Attention for Choroid Layer Segmentation in OCT Images
Deep Learning with Skip Connection Attention for Choroid Lay...
收藏 引用
Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
作者: Xiaoqian Mao Yitian Zhao Bang Chen Yuhui Ma Zaiwang Gu Shenshen Gu Jianlong Yang Jun Cheng Jiang Liu School of Mechatronic Engineering and Automation Shanghai University Shanghai China Cixi Institute of Biomedical Engineering Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo China Ubtech Robotics Corp Ubtech Research Shenzhen China Department of Computer Science and Engineering Southern University of Science and Technology Shenzhen China
Since the thickness and shape of the choroid layer are indicators for the diagnosis of several ophthalmic diseases, the choroid layer segmentation is an important task. There exist many challenges in segmentation of t... 详细信息
来源: 评论
Virtual Control Contraction Metrics: Convex Nonlinear Feedback Design via Behavioral Embedding
arXiv
收藏 引用
arXiv 2020年
作者: Wang, Ruigang Tóth, Roland Koelwijn, Patrick J.W. Manchester, Ian R. Australian Centre for Robotics School of Aerospace Mechanical and Mechatronic Engineering The University of Sydney NSW2006 Australia Department of Electrical Engineering Eindhoven University of Technology Eindhoven Netherlands Systems and Control Lab Institute for Computer Science and Control Budapest Hungary
This paper presents a systematic approach to nonlinear state-feedback control design that has three main advantages: (i) it ensures exponential stability and L2-gain performance with respect to a user-defined set of r... 详细信息
来源: 评论