咨询与建议

限定检索结果

文献类型

  • 20 篇 期刊文献
  • 3 篇 会议

馆藏范围

  • 23 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 19 篇 工学
    • 16 篇 计算机科学与技术...
    • 14 篇 软件工程
    • 9 篇 建筑学
    • 8 篇 土木工程
    • 6 篇 光学工程
    • 6 篇 生物工程
    • 3 篇 信息与通信工程
    • 2 篇 仪器科学与技术
    • 2 篇 测绘科学与技术
    • 2 篇 城乡规划学
    • 1 篇 机械工程
    • 1 篇 航空宇航科学与技...
    • 1 篇 农业工程
  • 12 篇 理学
    • 6 篇 数学
    • 6 篇 生物学
    • 4 篇 物理学
    • 2 篇 系统科学
    • 1 篇 天文学
    • 1 篇 地理学
    • 1 篇 地球物理学
    • 1 篇 地质学
  • 5 篇 管理学
    • 3 篇 图书情报与档案管...
    • 2 篇 管理科学与工程(可...
    • 1 篇 工商管理
  • 2 篇 法学
    • 2 篇 社会学
  • 1 篇 经济学
    • 1 篇 应用经济学
  • 1 篇 农学
    • 1 篇 作物学

主题

  • 2 篇 image fusion
  • 2 篇 deep learning
  • 2 篇 remote sensing
  • 1 篇 multitemporal da...
  • 1 篇 oblique photogra...
  • 1 篇 belief propagati...
  • 1 篇 iterative method...
  • 1 篇 cameras
  • 1 篇 digital surface ...
  • 1 篇 crime
  • 1 篇 nearest neighbor...
  • 1 篇 3d change detect...
  • 1 篇 conformal mappin...
  • 1 篇 iterative closes...
  • 1 篇 satellite stereo...
  • 1 篇 global optimizat...
  • 1 篇 point cloud regi...
  • 1 篇 satellite stereo...
  • 1 篇 3d modeling
  • 1 篇 glacier dynamics

机构

  • 8 篇 department of el...
  • 8 篇 translational da...
  • 8 篇 department of ci...
  • 8 篇 geospatial data ...
  • 4 篇 department of el...
  • 4 篇 department of ci...
  • 4 篇 translational da...
  • 4 篇 geospatial data ...
  • 2 篇 the geospatial d...
  • 2 篇 the geospatial d...
  • 1 篇 center for geosp...
  • 1 篇 civil engineerin...
  • 1 篇 department of se...
  • 1 篇 department of el...
  • 1 篇 department of el...
  • 1 篇 department of ci...
  • 1 篇 the geospatial d...
  • 1 篇 department of el...
  • 1 篇 department of ci...
  • 1 篇 box 7106 jordan ...

作者

  • 17 篇 qin rongjun
  • 5 篇 albanwan hessah
  • 4 篇 elhashash mostaf...
  • 4 篇 song shuang
  • 4 篇 xu ningli
  • 3 篇 ling xiao
  • 3 篇 tang yang
  • 3 篇 rongjun qin
  • 2 篇 huang debao
  • 1 篇 wu xinyi
  • 1 篇 gui shengxi
  • 1 篇 gao xiaowei
  • 1 篇 xiao ling
  • 1 篇 baran perver kor...
  • 1 篇 morelli luca
  • 1 篇 cheng tao
  • 1 篇 siong ng wee
  • 1 篇 yangfan zhang
  • 1 篇 phangt valerie
  • 1 篇 strasbaugh chris

语言

  • 23 篇 英文
检索条件"机构=Geospatial Data Analytics Lab"
23 条 记 录,以下是1-10 订阅
排序:
Using PlanetScope-derived time-series elevation models and orthophotos to track glacier 3D dynamics in mid-latitude mountain regions
收藏 引用
Mapping Sciences and Remote Sensing 2025年 第1期62卷
作者: Shengxi Gui Rongjun Qin a Geospatial Data Analytics Lab The Ohio State University Columbus OH USAb Department of Civil Environmental and Geodetic Engineering The Ohio State University Columbus OH USA a Geospatial Data Analytics Lab The Ohio State University Columbus OH USAb Department of Civil Environmental and Geodetic Engineering The Ohio State University Columbus OH USAc Department of Electrical and Computer Engineering The Ohio State University Columbus OH USAd Translational Data Analytics Institute The Ohio State University Columbus OH USA
ABSTRACTAssessing glacier surface height changes provides crucial insights into glacier mass loss and the impact of climate variability. Remote sensing images play a vital role in providing data points for monitoring.... 详细信息
来源: 评论
Towards a deep learning powered query engine for urban planning  21
Towards a deep learning powered query engine for urban plann...
收藏 引用
21st International Conference on Asian Language Processing, IALP 2017
作者: Shin, Teo Yon Zihong, Yuan Siong, Ng Wee Yangfan, Zhang Phangt, Valerie Data Analytics Department Institute for Infocomm Research ASTAR Singapore Singapore Information Systems and Geospatial Group Digital Planning Lab URA Singapore Singapore
Urban planning is crucial to sustainable growth. In order for the planners to make informed decisions, data from multiple sources have to be retrieved and cross-referenced efficiently. We discuss the implementation of... 详细信息
来源: 评论
A volumetric change detection framework using UAV oblique photogrammetry–a case study of ultra-high-resolution monitoring of progressive building collapse
收藏 引用
International Journal of Digital Earth 2021年 第11期14卷 1705-1720页
作者: Ningli Xu Debao Huang Shuang Song Xiao Ling Chris Strasbaugh Alper Yilmaz Halil Sezen Rongjun Qin Geospatial Data Analytics Lab The Ohio State UniversityColumbusOHUSA Photogrammetric Computer Vision Lab The Ohio State UniversityColumbusOHUSA Department of Civil Environmental and Geodetic EngineeringThe Ohio State UniversityColumbusOHUSA Department of Electrical and Computer Engineering The Ohio State UniversityColumbusOHUSA Translational Data Analytics Institute The Ohio State UniversityColumbusOHUSA Engineering Technology Services The Ohio State UniversityColumbusOHUSA
In this paper,we present a case study that performs an unmanned aerial vehicle(UAV)based fine-scale 3D change detection and monitoring of progressive collapse performance of a building during a demolition ***-temporal... 详细信息
来源: 评论
Large-scale DSM registration via motion averaging
Large-scale DSM registration via motion averaging
收藏 引用
2024 ISPRS Technical Commission I Mid-term Symposium on Intelligent Sensing and Remote Sensing Application
作者: Xu, Ningli Qin, Rongjun Geospatial Data Analytics Lab The Ohio State University Columbus United States Department of Civil Environmental and Geodetic Engineering The Ohio State University Columbus United States Department of Electrical and Computer Engineering The Ohio State University Columbus United States Translational Data Analytics Institute The Ohio State University Columbus United States
Generating wide-area digital surface models (DSMs) requires registering a large number of individual, and partially overlapped DSMs. This presents a challenging problem for a typical registration algorithm, since when... 详细信息
来源: 评论
An Adaptive and Image-guided Fusion for Stereo Satellite Image Derived Digital Surface Models
收藏 引用
Journal of Geodesy and Geoinformation Science 2022年 第4期5卷 1-9页
作者: Hessah ALBANWAN Rongjun QIN Department of Civil Engineering Kuwait UniversityKuwait 72504Kuwait Geospatial Data Analytics Lab The Ohio State UniversityColumbus 43210USA Department of Civil Environmental and Geodetic EngineeringThe Ohio State UniversityColumbus 43210USA Department of Electrical and Computer Engineering The Ohio State UniversityColumbus 43210USA Translational Data Analytics Institute The Ohio State UniversityColumbus 43210USA
The accuracy of Digital Surface Models(DSMs)generated using stereo matching methods varies due to the varying acquisition conditions and configuration parameters of stereo *** has been a good practice to fuse these DS... 详细信息
来源: 评论
On the Transferability of Learning Models for Semantic Segmentation for Remote Sensing data
arXiv
收藏 引用
arXiv 2023年
作者: Qin, Rongjun Zhang, Guixiang Tang, Yang The Geospatial Data Analytics Lab Department of Civil Environment and Geodetic Engineering The Department of Electrical and Computer Engineering Translational Data Analytics Institute The Ohio state University Columbus United States The Geospatial Data Analytics Lab Department of Electrical and Computer Engineering The Ohio State University Columbus United States The Geospatial Data Analytics Lab Department of Civil Environment and Geodetic Engineering The Ohio State University Columbus United States
Recent deep learning-based methods outperform traditional learning methods on remote sensing (RS) semantic segmentation/classification tasks. However, they require large training datasets and are generally known for l... 详细信息
来源: 评论
Image Fusion in Remote Sensing: An Overview and Meta Analysis
arXiv
收藏 引用
arXiv 2024年
作者: Albanwan, Hessah Qin, Rongjun Tang, Yang The Geospatial Data Analytics Lab Department of Civil Environment and Geodetic Engineering The Ohio State University Columbus United States The Geospatial Data Analytics Lab Department of Civil Environment and Geodetic Engineering The Department of Electrical and Computer Engineering Translational Data Analytics Institute The Ohio state University Columbus United States
Image fusion in Remote Sensing (RS) has been a consistent demand due to its ability to turn raw images of different resolutions, sources, and modalities into accurate, complete, and spatio-temporally coherent images. ... 详细信息
来源: 评论
Select-and-Combine (SAC): A Novel Multi-Stereo Depth Fusion Algorithm for Point Cloud Generation via Efficient Local Markov Netlets
arXiv
收藏 引用
arXiv 2023年
作者: Elhashash, Mostafa Qin, Rongjun Geospatial Data Analytics Lab Department of Civil Environment and Geodetic Engineering Department of Electrical and Computer Engineering Translational Data Analytics Institute The Ohio state University Columbus United States
Many practical systems for image-based surface reconstruction employ a stereo/multi-stereo paradigm, due to its ability to scale for large scenes and its ease of implementation for out-of-core operations. In this proc... 详细信息
来源: 评论
Trail configurational attributes and visitors’ spatial distribution in natural recreation area  12
Trail configurational attributes and visitors’ spatial dist...
收藏 引用
12th International Space Syntax Symposium, SSS 2019
作者: Zhai, Yujia Baran, Perver Korça College of Architecture and Urban Planning Big Data and Urban Spatial Analytics LAB Tongji University Shanghai China No.1239 Siping Road Yangpu District Shanghai200092 China Center for Geospatial Analytics College of Natural Resources College of Design North Carolina State University NC United States Box 7106 Jordan Hall RaleighNC27695-7106 United States
Visitors’ expectations for social interactions in natural recreation area is diverse;for instance, some seek solitude experience, while others may expect high level of social contacts. Better understanding of users’... 详细信息
来源: 评论
Point Cloud Registration for LiDAR and Photogrammetric data: a Critical Synthesis and Performance Analysis on Classic and Deep Learning Algorithms
arXiv
收藏 引用
arXiv 2023年
作者: Xu, Ningli Qin, Rongjun Song, Shuang Geospatial Data Analytics Lab The Ohio State University Columbus United States Department of Civil Environmental and Geodetic Engineering The Ohio State University Columbus United States Department of Electrical and Computer Engineering The Ohio State University Columbus United States Translational Data Analytics Institute The Ohio State University Columbus United States
Three-dimensional (3D) point cloud registration is a fundamental step for many 3D modeling and mapping applications. Existing approaches are highly disparate in the data source, scene complexity, and application, ther... 详细信息
来源: 评论