咨询与建议

限定检索结果

文献类型

  • 49 篇 期刊文献
  • 8 篇 会议

馆藏范围

  • 57 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 46 篇 工学
    • 24 篇 测绘科学与技术
    • 15 篇 计算机科学与技术...
    • 11 篇 电气工程
    • 6 篇 信息与通信工程
    • 5 篇 环境科学与工程(可...
    • 3 篇 化学工程与技术
    • 3 篇 软件工程
    • 3 篇 生物工程
    • 2 篇 仪器科学与技术
    • 2 篇 控制科学与工程
    • 2 篇 建筑学
    • 2 篇 交通运输工程
    • 1 篇 动力工程及工程热...
    • 1 篇 电子科学与技术(可...
    • 1 篇 土木工程
  • 35 篇 理学
    • 21 篇 地球物理学
    • 9 篇 地理学
    • 8 篇 生物学
    • 4 篇 化学
    • 2 篇 数学
    • 2 篇 大气科学
    • 1 篇 系统科学
    • 1 篇 生态学
  • 14 篇 医学
    • 10 篇 临床医学
    • 4 篇 公共卫生与预防医...
  • 8 篇 管理学
    • 4 篇 公共管理
    • 3 篇 管理科学与工程(可...
    • 2 篇 图书情报与档案管...
  • 1 篇 法学
    • 1 篇 社会学
  • 1 篇 历史学
    • 1 篇 考古学
  • 1 篇 农学

主题

  • 4 篇 deep learning
  • 3 篇 obstacle detecti...
  • 3 篇 point clouds
  • 3 篇 mavs
  • 3 篇 computer vision
  • 2 篇 covid-19
  • 2 篇 fisheye image
  • 2 篇 object detection
  • 2 篇 rcan
  • 2 篇 buildings
  • 2 篇 accessibility
  • 2 篇 predictive model...
  • 2 篇 uav
  • 2 篇 remote sensing
  • 2 篇 machine learning
  • 2 篇 barriers
  • 2 篇 data fusion
  • 2 篇 diseases
  • 2 篇 data models
  • 2 篇 calibration

机构

  • 7 篇 wuhan univ inst ...
  • 5 篇 wuhan univ state...
  • 4 篇 geospatial sensi...
  • 4 篇 wenzhou univ tec...
  • 3 篇 minist educ prc ...
  • 3 篇 east china norma...
  • 3 篇 univ tehran coll...
  • 3 篇 univ waterloo de...
  • 3 篇 wenzhou univ col...
  • 3 篇 univ waterloo de...
  • 2 篇 nat resources ca...
  • 2 篇 caltech jet prop...
  • 2 篇 tongji univ coll...
  • 2 篇 univ wisconsin d...
  • 2 篇 univ chinese aca...
  • 2 篇 wuhan univ sch c...
  • 2 篇 makerere univ co...
  • 2 篇 shanghai weizhiz...
  • 2 篇 univ waterloo de...
  • 2 篇 wenzhou univ key...

作者

  • 12 篇 li jonathan
  • 7 篇 chen chi
  • 6 篇 heidari ali asgh...
  • 6 篇 chen huiling
  • 6 篇 yang bisheng
  • 5 篇 he hongjie
  • 5 篇 pirasteh saied
  • 4 篇 xu hongzhang
  • 4 篇 eyobu odongo ste...
  • 4 篇 wang mingjing
  • 3 篇 gao kyle
  • 3 篇 chapman michael ...
  • 3 篇 yan zhengfei
  • 3 篇 wang zhiye
  • 3 篇 ma lingfei
  • 3 篇 varshosaz masood
  • 3 篇 badrloo samira
  • 3 篇 sun shangzhe
  • 3 篇 gao song
  • 2 篇 ma ruiqi

语言

  • 44 篇 英文
  • 10 篇 其他
检索条件"机构=Geospatial Data Intelligence Lab"
57 条 记 录,以下是1-10 订阅
排序:
An Optimized LSTM Model for Diagnosis Prediction of Lower Respiratory Tract Infections Using a Minimalistic data Set
收藏 引用
IEEE ACCESS 2025年 13卷 60341-60354页
作者: Bukenya, Lukman Eyobu, Odongo Steven Oyana, Tonny J. Makerere Univ Coll Comp & Informat Sci Dept Networks Kampala Uganda Makerere Univ Coll Comp & Informat Sci Geospatial Data & Computat Intelligence Lab Kampala Uganda Makerere Univ Coll Comp & Informat Sci Internet Things IoT Res & Training Lab Kampala Uganda
data scarcity presents a significant challenge in developing effective data-driven diagnostic systems, particularly in healthcare settings where comprehensive feature capture is often limited. In medical contexts, vit... 详细信息
来源: 评论
Mother: a maternal online technology for health care dataset
收藏 引用
BMC RESEARCH NOTES 2025年 第1期18卷 1-3页
作者: Eyobu, Odongo Steven Nyanga, Brian Angoda Bukenya, Lukman Ongom, Daniel Oyana, Tonny J. Makerere Univ Coll Comp & Informat Sci Geospatial Data & Computat Intelligence Lab POB 7062 Kampala Uganda Makerere Univ Sch Comp & Informat Technol Dept Networks POB 7062 Kampala Uganda
ObjectivesThese data enable the development of both textual and speech based conversational machine learning models that can be used by expectant mothers to provide answers to challenges they face during the different... 详细信息
来源: 评论
ACGRIME: adaptive chaotic Gaussian RIME optimizer for global optimization and feature selection
收藏 引用
CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS 2025年 第1期28卷 1-39页
作者: Batis, Mohammed Chen, Yi Wang, Mingjing Liu, Lei Heidari, Ali Asghar Chen, Huiling Wenzhou Univ Key Lab Intelligent Informat Safety & Emergency Zh Wenzhou 325035 Peoples R China Wenzhou Univ Technol Sch Data Sci & Artificial Intelligence Wenzhou 325000 Peoples R China Sichuan Univ Coll Comp Sci Chengdu 610065 Sichuan Peoples R China Univ Tehran Coll Engn Sch Surveying & Geospatial Engn Tehran Iran
Feature selection (FS) is a crucial data preprocessing technique that selects important features to enhance learning efficiency, yet it encounters challenges due to the high-dimensional search space. This paper introd... 详细信息
来源: 评论
DALI-SLAM: Degeneracy-aware LiDAR-inertial SLAM with novel distortion correction and accurate multi-constraint pose graph optimization
收藏 引用
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING 2025年 221卷 92-108页
作者: Wu, Weitong Chen, Chi Yang, Bisheng Zou, Xianghong Liang, Fuxun Xu, Yuhang He, Xiufeng Hohai Univ Sch Earth Sci & Engn Nanjing 211100 Peoples R China Wuhan Univ State Key Lab Informat Engn Surveying Mapping & Re Wuhan 430079 Peoples R China Wuhan Univ Minist Educ China Engn Res Ctr Spatio temporal Data Smart Acquisit & Wuhan 430079 Peoples R China Wuhan Univ Inst Geospatial Intelligence Wuhan 430079 Peoples R China
LiDAR-Inertial simultaneous localization and mapping (LI-SLAM) plays a crucial role in various applications such as robot localization and low-cost 3D mapping. However, factors including inaccurate motion distortion e... 详细信息
来源: 评论
Adaptive density-based clustering for many objective similarity or redundancy evolutionary optimization
收藏 引用
EXPERT SYSTEMS WITH APPLICATIONS 2025年 266卷
作者: Wang, Mingjing Heidari, Ali Asghar Chen, Long Wang, Ruili Liu, Mingzhe Shao, Lizhi Chen, Huiling Wenzhou Univ Technol Sch Data Sci & Artificial Intelligence Wenzhou 325000 Peoples R China Univ Tehran Coll Engn Sch Surveying & Geospatial Engn Tehran Iran Southeast Univ Sch Comp Sci & Engn Nanjing 211189 Peoples R China Southeast Univ Key Lab Comp Network & Informat Integrat Minist Educ Nanjing 211189 Peoples R China Chinese Acad Sci Key Lab Mol Imaging Inst Automat Beijing 100190 Peoples R China Wenzhou Univ Coll Comp Sci & Artificial Intelligence Wenzhou 325035 Zhejiang Peoples R China
With the increase in the number of objectives, the curse of dimensionality will eventually occur in some practical multi-objective optimization problems. This situation will become even worse when the multi- objective... 详细信息
来源: 评论
PylonModeler: A hybrid-driven 3D reconstruction method for power transmission pylons from LiDAR point clouds
收藏 引用
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING 2025年 220卷 100-124页
作者: Wu, Shaolong Chen, Chi Yang, Bisheng Yan, Zhengfei Wang, Zhiye Sun, Shangzhe Zou, Qin Fu, Jing Wuhan Univ State Key Lab Informat Engn Surveying Mapping & Re Wuhan Peoples R China Minist Educ PRC Engn Res Ctr Space Time Data Capturing & Smart App Wuhan Peoples R China Wuhan Univ Inst Geospatial Intelligence Wuhan Peoples R China Wuhan Univ Sch Comp Sci Wuhan Peoples R China China Elect Power Res Inst Wuhan Branch Wuhan Peoples R China
As the power grid is an indispensable foundation of modern society, creating a digital twin of the grid is of great importance. Pylons serve as components in the transmission corridor, and their precise 3D reconstruct... 详细信息
来源: 评论
Cross-view geolocalization and disaster mapping with street-view and VHR satellite imagery: A case study of Hurricane IAN
收藏 引用
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING 2025年 220卷 841-854页
作者: Li, Hao Deuser, Fabian Yin, Wenping Luo, Xuanshu Walther, Paul Mai, Gengchen Huang, Wei Werner, Martin Tech Univ Munich Sch Engn & Design Professorship Big Geospatial Data Management D-85521 Munich Bavaria Germany Univ Bundeswehr Munich Inst Distributed Intelligent Syst D-85579 Neubiberg Bavaria Germany China Univ Min & Technol Sch Environm & Spatial Informat Xuzhou 221116 Peoples R China Univ Texas Austin Dept Geog & Environm Spatially Explicit Artificial Intelligence Lab Austin TX 78712 USA Tongji Univ Coll Surveying & Geoinformat Shanghai 200092 Peoples R China
Nature disasters playa key role in shaping human-urban infrastructure interactions. Effective and efficient response to natural disasters is essential for building resilience and sustainable urban environment. Two typ... 详细信息
来源: 评论
DeCoTa: a lightweight decentralized cross-chain transfer scheme based on hash-locking
收藏 引用
SCIENTIFIC REPORTS 2025年 第1期15卷 1-15页
作者: Zou, Huiying Sun, Hua Chen, Sheng Ren, Wei Zheng, Xianghan China Univ Geosci Sch Comp Sci Wuhan 430074 Peoples R China Soochow Univ Adv Comp Prov Univ Key Lab Data Intelligence Suzhou Peoples R China Sichuan Univ Key Lab Data Protect & Intelligent Management Minist Educ Chengdu Peoples R China Third Surveying & Mapping Inst Hunan Prov Changsha Hunan Peoples R China Hunan Engn Res Ctr Geog Informat Secur & Applicat Changsha Hunan Peoples R China Hubei Univ Econ Hubei Key Lab Digital Finance Innovat Wuhan Peoples R China CASM State Key Lab Geoinformat Engn Key Lab Surveying & Mapping Sci & Geospatial Infor Beijing Peoples R China Fuzhou Univ Coll Comp & Big Data Fuzhou Peoples R China Sanya Coll Sch Informat & Intelligent Engn Sanya Peoples R China
With the wide application of blockchain comes the challenge of cross-chain interaction. For example, the isolation between the information stored in different blockchains can result in the "isolated islands of va... 详细信息
来源: 评论
PatchOut: A novel patch-free approach based on a transformer-CNN hybrid framework for fine-grained land-cover classification on large-scale airborne hyperspectral images
收藏 引用
INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION 2025年 138卷
作者: Ji, Renjie Tan, Kun Wang, Xue Tang, Shuwei Sun, Jin Niu, Chao Pan, Chen East China Normal Univ Key Lab Spatial Temporal Big Data Anal & Applicat Minist Nat Resources Shanghai 200241 Peoples R China East China Normal Univ Key Lab Geog Informat Sci Minist Educ Shanghai 200241 Peoples R China East China Normal Univ Sch Geog Sci Shanghai 200241 Peoples R China East China Normal Univ Sch Geospatial Artificial Intelligence Shanghai 200241 Peoples R China Shanghai Municipal Inst Surveying & Mapping Shanghai 200063 Peoples R China
Airborne hyperspectral systems can provide high-resolution hyperspectral images (HSIs) covering large scenes, enabling fine-grained land-cover classification. However, the most popular patch-based methods are limited ... 详细信息
来源: 评论
Broad Area Search and Detection of Surface-to-Air Missile Sites Using Spatial Fusion of Component Object Detections From Deep Neural Networks
收藏 引用
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING 2020年 13卷 4728-4737页
作者: Cannaday, Alan B., II Davis, Curt H. Scott, Grant J. Ruprecht, Blake Anderson, Derek T. Univ Missouri Ctr Geospatial Intelligence Columbia MO 65211 USA Univ Missouri Mizzou Informat & Data Fus Lab Columbia MO 65211 USA
Here, we demonstrate how deep neural network (DNN) detections of multiple constitutive or component objects that are part of a larger, more complex, and encompassing feature can be spatially fused to improve the searc... 详细信息
来源: 评论