咨询与建议

限定检索结果

文献类型

  • 32 篇 期刊文献
  • 9 篇 会议

馆藏范围

  • 41 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 28 篇 工学
    • 22 篇 计算机科学与技术...
    • 21 篇 软件工程
    • 8 篇 信息与通信工程
    • 7 篇 生物工程
    • 4 篇 土木工程
    • 3 篇 建筑学
    • 3 篇 测绘科学与技术
    • 3 篇 环境科学与工程(可...
    • 3 篇 城乡规划学
    • 2 篇 机械工程
    • 2 篇 控制科学与工程
    • 2 篇 水利工程
    • 2 篇 化学工程与技术
    • 2 篇 食品科学与工程(可...
  • 20 篇 理学
    • 8 篇 生物学
    • 7 篇 地球物理学
    • 5 篇 数学
    • 3 篇 物理学
    • 3 篇 地质学
    • 2 篇 地理学
    • 2 篇 统计学(可授理学、...
    • 1 篇 化学
    • 1 篇 天文学
    • 1 篇 大气科学
  • 7 篇 管理学
    • 4 篇 管理科学与工程(可...
    • 4 篇 工商管理
    • 4 篇 图书情报与档案管...
  • 3 篇 法学
    • 3 篇 社会学
  • 3 篇 农学
    • 2 篇 农业资源与环境
  • 2 篇 经济学
    • 2 篇 应用经济学
  • 1 篇 医学

主题

  • 4 篇 remote sensing
  • 2 篇 big data
  • 2 篇 semantics
  • 2 篇 spatial interact...
  • 1 篇 pulsars
  • 1 篇 complex networks
  • 1 篇 heavy trucks
  • 1 篇 mobility
  • 1 篇 lbs
  • 1 篇 disaster prevent...
  • 1 篇 sustainable deve...
  • 1 篇 projection algor...
  • 1 篇 deep neural netw...
  • 1 篇 indexes
  • 1 篇 generative adver...
  • 1 篇 plant senescence
  • 1 篇 zoning
  • 1 篇 interactive map
  • 1 篇 physical-based r...
  • 1 篇 exceptional

机构

  • 3 篇 geospatial data ...
  • 2 篇 department of ph...
  • 2 篇 dipartimento di ...
  • 2 篇 department of ph...
  • 2 篇 dipartimento di ...
  • 2 篇 school of ecolog...
  • 2 篇 w. w. hansen exp...
  • 2 篇 geospatial data ...
  • 2 篇 grupo de altas e...
  • 2 篇 istituto naziona...
  • 2 篇 max-planck-insti...
  • 2 篇 national enginee...
  • 2 篇 geospatial data ...
  • 2 篇 dipartimento di ...
  • 2 篇 southwest united...
  • 2 篇 université paris...
  • 2 篇 université borde...
  • 2 篇 nasa goddard spa...
  • 2 篇 geospatial data ...
  • 2 篇 irap université ...

作者

  • 21 篇 gao song
  • 4 篇 rao jinmeng
  • 4 篇 kang yuhao
  • 3 篇 liang yunlei
  • 3 篇 song gao
  • 2 篇 caraveo p.a.
  • 2 篇 green d.
  • 2 篇 horan d.
  • 2 篇 orlando e.
  • 2 篇 orienti m.
  • 2 篇 persic m.
  • 2 篇 sgrò c.
  • 2 篇 lubrano p.
  • 2 篇 gargano f.
  • 2 篇 huang qunying
  • 2 篇 kuss m.
  • 2 篇 serini d.
  • 2 篇 chanussot jocely...
  • 2 篇 di lalla n.
  • 2 篇 zhang qianheng

语言

  • 39 篇 英文
  • 2 篇 其他
检索条件"机构=Geospatial Data Science Lab"
41 条 记 录,以下是11-20 订阅
排序:
A Modified Spectral Remote Sensing Index to Map Plastic Greenhouses in Fragmented Terrains
SSRN
收藏 引用
SSRN 2025年
作者: Chen, Shanshan Chen, Yijia Gao, Song Li, Chun Li, Ninglv Chen, Liding School of Ecology and Environmental Science Yunnan University Kunming650091 China Southwest United Graduate School Kunming650092 China Geospatial Data Science Lab Department of Geography University of Wisconsin–Madison MadisonWI53706 United States State Key Laboratory of Urban and Regional Ecology Research Center for Eco-Environmental Sciences Chinese Academy of Sciences Beijing100085 China
Plastic greenhouse (PG), as a new type of modern agricultural measure, has been used widely due to its significant benefits for agricultural production. However, it also raises concerns about its potential environment...
来源: 评论
DeepSSN: a deep convolutional neural network to assess spatial scene similarity
arXiv
收藏 引用
arXiv 2022年
作者: Guo, Danhuai Ge, Shiyin Zhang, Shu Gao, Song Tao, Ran Wang, Yangang Spatio-Temporal Data Intelligence Lab College of Information Science and Technology Beijing University of Chemical Technology Beijing China Computer Network Information Center Chinese Academy of Sciences Beijing China Geospatial Data Science Lab Department of Geography University of Wisconsin-Madison WI United States School of Geosciences University of South Florida FL United States
Spatial-query-by-sketch is an intuitive tool to explore human spatial knowledge about geographic environments and to support communication with scene database queries. However, traditional sketch-based spatial search ... 详细信息
来源: 评论
Late Mesozoic Tectonic Transfer in the Southern Great Xing'An Range, Ne China: Evidence from Geochronology, Geochemistry and Lu-Hf Isotopes of Magmatic Intrusions in Inner Mongolia
SSRN
收藏 引用
SSRN 2023年
作者: Zhao, Zhixiong Dong, Guochen Santosh, M. Bao, Xiangping Ren, Yingwei Xie, Zhuolin School of Earth Science and Mineral Resources China University of Geosciences Beijing100083 China Ulanqab Key Laboratory of Geospatial Big Data Application and Environmental Monitoring Jining Normal University Ulanqab012000 China Department of Earth Science University of Adelaide Adelaide5005 Australia Yonsei Frontier Lab Yonsei University Seoul Korea Republic of
The geodynamic background of the Mesozoic magmatism in the Jarud region of Inner Mongolia remains debated. Here we present zircon U-Pb geochronology, geochemistry and Hf isotope data on the Late Jurassic diorite and E... 详细信息
来源: 评论
Context-aware knowledge graph framework for traffic speed forecasting using graph neural network
arXiv
收藏 引用
arXiv 2024年
作者: Zhang, Yatao Wang, Yi Gao, Song Raubal, Martin Future Resilient Systems Singapore-ETH Centre ETH Zurich Singapore138602 Singapore Institute of Cartography and Geoinformation ETH Zurich Zurich8093 Switzerland Civil and Natural Resources Engineering Department University of Canterbury Christchurch8041 New Zealand Geospatial Data Science Lab Department of Geography University of Wisconsin-Madison MadisonWI53706 United States
Human mobility is intricately influenced by urban contexts spatially and temporally, constituting essential domain knowledge in understanding traffic systems. While existing traffic forecasting models primarily rely o... 详细信息
来源: 评论
FLEE-GNN: A Federated Learning System for Edge-Enhanced Graph Neural Network in Analyzing geospatial Resilience of Multicommodity Food Flows
arXiv
收藏 引用
arXiv 2023年
作者: Qu, Yuxiao Rao, Jinmeng Gao, Song Zhang, Qianheng Chao, Wei-Lun Su, Yu Miller, Michelle Morales, Alfonso Huber, Patrick R. Department of Computer Science Carnegie Mellon University United States Geospatial Data Science lab University of Wisconsin Madison United States Department of Computer Science and Engineering Ohio State University United States Center for Integrated Agricultural Systems University of Wisconsin Madison United States Department of Planning and Landscape Architecture University of Wisconsin Madison United States Institute of the Environment University of California Davis United States
Understanding and measuring the resilience of food supply networks is a global imperative to tackle increasing food insecurity. However, the complexity of these networks, with their multidimensional interactions and d... 详细信息
来源: 评论
Measuring Network Resilience via geospatial Knowledge Graph: a Case Study of the US Multi-Commodity Flow Network
arXiv
收藏 引用
arXiv 2022年
作者: Rao, Jinmeng Gao, Song Miller, Michelle Morales, Alfonso Geospatial Data Science Lab University of Wisconsin-Madison Madison United States Center for Integrated Agricultural Systems University of Wisconsin-Madison Madison United States Department of Planning and Landscape Architecture University of Wisconsin-Madison Madison United States
Quantifying the resilience in the food system is important for food security issues. In this work, we present a geospatial knowledge graph (GeoKG)-based method for measuring the resilience of a multi-commodity flow ne... 详细信息
来源: 评论
On the Opportunities and Challenges of Foundation Models for geospatial Artificial Intelligence
arXiv
收藏 引用
arXiv 2023年
作者: Mai, Gengchen Huang, Weiming Sun, Jin Song, Suhang Mishra, Deepak Liu, Ninghao Gao, Song Liu, Tianming Cong, Gao Hu, Yingjie Cundy, Chris Li, Ziyuan Zhu, Rui Lao, Ni SEAI Lab Department of Geography University of Georgia United States School of Computer Science and Engineering Nanyang Technological University Singapore School of Computing University of Georgia United States College of Public Health University of Georgia United States Department of Geography University of Georgia United States Geospatial Data Science Lab Department of Geography University of Wisconsin-Madison United States GeoAI Lab Department of Geography University at Buffalo United States Department of Computer Science Stanford University United States School of Business University of Connecticut United States School of Geographical Sciences University of Bristol United Kingdom Google United States
Large pre-trained models, also known as foundation models (FMs), are trained in a task-agnostic manner on large-scale data and can be adapted to a wide range of downstream tasks by fine-tuning, few-shot, or even zero-... 详细信息
来源: 评论
Spatio-Temporal Stratified Associations between Urban Human Activities and Crime Patterns: A Case Study in San Francisco Around the Covid-19 Stay-at-Home Mandate
SSRN
收藏 引用
SSRN 2022年
作者: Chen, Tongxin Bowers, Kate Zhu, Di Gao, Xiaowei Cheng, Tao Space Time Lab for Big Data Analytics Department of Civil Environmental and Geomatic Engineering University College London LondonWC1E 6BT United Kingdom Department of Security and Crime Science University College London LondonWC1H 9EZ United Kingdom Geospatial Data Intelligence Lab Department of Geography Environment and Society University of Minnesota Twin Cities Minneapolis55455 United States
Crime changes have been reported as a result of human routine activity shifting due to containment policies, such as stay-at-home (SAH) mandates during the COVID-19 pandemic. However, the way in which the manifestatio... 详细信息
来源: 评论
A gravity-inspired model integrating geospatial and socioeconomic distances for truck origin–destination flows prediction
收藏 引用
International Journal of Applied Earth Observation and Geoinformation 2025年 136卷
作者: Zhao, Yibo Cheng, Shifen Gao, Song Lu, Feng State Key Laboratory of Resources and Environmental Information System Institute of Geographic Sciences and Natural Resources Research CAS Beijing 100101 China University of Chinese Academy of Sciences Beijing 100049 China Geospatial Data Science Lab Department of Geography University of Wisconsin-Madison Madison 53706 WI United States The Academy of Digital China Fuzhou University Fuzhou 350002 China Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application Nanjing 210023 China
Accurately predicting truck origin–destination (OD) flows is essential for optimizing logistics systems and promoting coordinated regional development. Existing methods typically assume a monotonic decrease in truck ... 详细信息
来源: 评论
Cross-City Matters: A Multimodal Remote Sensing Benchmark dataset for Cross-City Semantic Segmentation using High-Resolution Domain Adaptation Networks
arXiv
收藏 引用
arXiv 2023年
作者: Hong, Danfeng Zhang, Bing Li, Hao Li, Yuxuan Yao, Jing Li, Chenyu Werner, Martin Chanussot, Jocelyn Zipf, Alexander Zhu, Xiao Xiang Aerospace Information Research Institute Chinese Academy of Sciences Beijing100094 China College of Resources and Environment University of Chinese Academy of Sciences Beijing100049 China Big Geospatial Data Management Technical University of Munich Munich85521 Germany School of Mathematics Southeast University Nanjing210096 China Univ. Grenoble Alpes CNRS Grenoble INP GIPSA-Lab Grenoble38000 France GIScience Chair Institute of Geography Heidelberg University Heidelberg69120 Germany Data Science in Earth Observation Technical University of Munich Munich80333 Germany
Artificial intelligence (AI) approaches nowadays have gained remarkable success in single-modality-dominated remote sensing (RS) applications, especially with an emphasis on individual urban environments (e.g., single... 详细信息
来源: 评论