咨询与建议

限定检索结果

文献类型

  • 295 篇 期刊文献
  • 158 篇 会议
  • 6 册 图书

馆藏范围

  • 459 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 344 篇 工学
    • 272 篇 计算机科学与技术...
    • 190 篇 软件工程
    • 45 篇 控制科学与工程
    • 44 篇 信息与通信工程
    • 35 篇 光学工程
    • 30 篇 生物工程
    • 21 篇 生物医学工程(可授...
    • 18 篇 电气工程
    • 18 篇 电子科学与技术(可...
    • 15 篇 机械工程
    • 11 篇 化学工程与技术
    • 9 篇 材料科学与工程(可...
    • 8 篇 土木工程
    • 7 篇 力学(可授工学、理...
    • 6 篇 仪器科学与技术
    • 6 篇 建筑学
    • 6 篇 安全科学与工程
  • 180 篇 理学
    • 100 篇 数学
    • 60 篇 物理学
    • 44 篇 统计学(可授理学、...
    • 34 篇 生物学
    • 20 篇 系统科学
    • 17 篇 化学
    • 7 篇 地球物理学
  • 45 篇 管理学
    • 28 篇 管理科学与工程(可...
    • 22 篇 图书情报与档案管...
    • 17 篇 工商管理
  • 16 篇 法学
    • 16 篇 社会学
  • 7 篇 经济学
    • 7 篇 应用经济学
  • 6 篇 农学
  • 6 篇 医学
  • 3 篇 教育学
  • 2 篇 文学
  • 1 篇 哲学

主题

  • 15 篇 reinforcement le...
  • 10 篇 semantics
  • 9 篇 deep learning
  • 8 篇 approximation al...
  • 7 篇 decoding
  • 7 篇 machine learning
  • 7 篇 stochastic syste...
  • 6 篇 computer science
  • 6 篇 bayesian inferen...
  • 5 篇 adversarial mach...
  • 5 篇 speech recogniti...
  • 5 篇 complexity theor...
  • 5 篇 artificial intel...
  • 5 篇 accuracy
  • 4 篇 quantum control
  • 4 篇 deep neural netw...
  • 4 篇 quantum algorith...
  • 4 篇 neural networks
  • 4 篇 optimization
  • 4 篇 computational li...

机构

  • 71 篇 google deepmind ...
  • 48 篇 google
  • 28 篇 google deepmind
  • 26 篇 google research ...
  • 25 篇 mpi for intellig...
  • 21 篇 google research
  • 16 篇 google united st...
  • 13 篇 google inc.
  • 13 篇 deepmind united ...
  • 10 篇 department of co...
  • 10 篇 google inc. unit...
  • 9 篇 department of co...
  • 9 篇 google research ...
  • 8 篇 department of el...
  • 8 篇 department of co...
  • 8 篇 department of co...
  • 7 篇 department of co...
  • 7 篇 deepmind
  • 7 篇 heidelberg
  • 6 篇 department of el...

作者

  • 36 篇 bernhard schölko...
  • 35 篇 kevin murphy
  • 8 篇 müller klaus-rob...
  • 7 篇 farhi edward
  • 6 篇 jiang zhang
  • 6 篇 bakas spyridon
  • 6 篇 leibo joel z.
  • 6 篇 søgaard anders
  • 6 篇 menze bjoern
  • 6 篇 montavon grégoir...
  • 5 篇 summers ronald m...
  • 5 篇 baumgartner mich...
  • 5 篇 veličković petar
  • 5 篇 antonelli michel...
  • 5 篇 kopp-schneider a...
  • 5 篇 sadigh dorsa
  • 5 篇 isensee fabian
  • 5 篇 xia fei
  • 5 篇 demaine erik d.
  • 4 篇 kreshuk anna

语言

  • 395 篇 英文
  • 63 篇 其他
  • 1 篇 中文
检索条件"机构=Google DeepMind and Department of Computer Science and Technology"
459 条 记 录,以下是1-10 订阅
排序:
Alignment of MPNNs and Graph Transformers  1
Alignment of MPNNs and Graph Transformers
收藏 引用
1st Geometry-Grounded Representation Learning and Generative Modeling Workshop, GRaM 2024 at the 41st International Conference on Machine Learning, ICML 2024
作者: Nguyen, Bao Yodaiken, Anjana Veličković, Petar Department of Computer Science and Technology United Kingdom Google DeepMind United Kingdom
As the complexity of machine learning (ML) model architectures increases, it is important to understand to what degree simpler and more efficient architectures can align with their complex counterparts. In this paper,...
来源: 评论
Commute-Time-Optimised Graphs for GNNs  1
Commute-Time-Optimised Graphs for GNNs
收藏 引用
1st Geometry-Grounded Representation Learning and Generative Modeling Workshop, GRaM 2024 at the 41st International Conference on Machine Learning, ICML 2024
作者: Sterner, Igor Su, Shiye Veličković, Petar Department of Computer Science and Technology University of Cambridge United Kingdom Google DeepMind United Kingdom
We explore graph rewiring methods that optimise commute time. Recent graph rewiring approaches facilitate long-range interactions in sparse graphs, making such rewirings commute-time-optimal on average. However, when ... 详细信息
来源: 评论
Experts Don't Cheat: Learning What You Don't Know By Predicting Pairs  41
Experts Don't Cheat: Learning What You Don't Know By Predict...
收藏 引用
41st International Conference on Machine Learning, ICML 2024
作者: Johnson, Daniel D. Tarlow, Daniel Duvenaud, David Maddison, Chris J. Google DeepMind United Kingdom University of Toronto Department of Computer Science ON Canada
Identifying how much a model pˆθY|X knows about the stochastic real-world process pY|X it was trained on is important to ensure it avoids producing incorrect or "hallucinated" answers or taking unsafe actio... 详细信息
来源: 评论
FRAPPÉ: A Group Fairness Framework for Post-Processing Everything  41
FRAPPÉ: A Group Fairness Framework for Post-Processing Ever...
收藏 引用
41st International Conference on Machine Learning, ICML 2024
作者: Ţifrea, Alexandru Lahoti, Preethi Packer, Ben Halpern, Yoni Beirami, Ahmad Prost, Flavien Department of Computer Science ETH Zurich Switzerland Google DeepMind United Kingdom
Despite achieving promising fairness-error tradeoffs, in-processing mitigation techniques for group fairness cannot be employed in numerous practical applications with limited computation resources or no access to the...
来源: 评论
BAGEL: Bootstrapping Agents by Guiding Exploration with Language  41
BAGEL: Bootstrapping Agents by Guiding Exploration with Lang...
收藏 引用
41st International Conference on Machine Learning, ICML 2024
作者: Murty, Shikhar Manning, Christopher D. Shaw, Peter Joshi, Mandar Lee, Kenton Department of Computer Science Stanford University United States Google Deepmind United Kingdom
Following natural language instructions by executing actions in digital environments (e.g. web-browsers and REST APIs) is a challenging task for language model (LM) agents. Unfortunately, LM agents often fail to gener... 详细信息
来源: 评论
The Poisson Midpoint Method for Langevin Dynamics: Provably Efficient Discretization for Diffusion Models  38
The Poisson Midpoint Method for Langevin Dynamics: Provably ...
收藏 引用
38th Conference on Neural Information Processing Systems, NeurIPS 2024
作者: Kandasamy, Saravanan Nagaraj, Dheeraj Department of Computer Science Cornell University United States Google DeepMind United Kingdom
Langevin Dynamics is a Stochastic Differential Equation (SDE) central to sampling and generative modeling and is implemented via time discretization. Langevin Monte Carlo (LMC), based on the Euler-Maruyama discretizat...
来源: 评论
Interpretability Illusions in the Generalization of Simplified Models  41
Interpretability Illusions in the Generalization of Simplifi...
收藏 引用
41st International Conference on Machine Learning, ICML 2024
作者: Friedman, Dan Lampinen, Andrew Dixon, Lucas Chen, Danqi Ghandeharioun, Asma Department of Computer Science Princeton University United States Google DeepMind United Kingdom Google Research United States
A common method to study deep learning systems is to use simplified model representations-for example, using singular value decomposition to visualize the model's hidden states in a lower dimensional space. This a... 详细信息
来源: 评论
CASPR: COMBINING AXES PRECONDITIONERS THROUGH KRONECKER APPROXIMATION FOR DEEP LEARNING  12
CASPR: COMBINING AXES PRECONDITIONERS THROUGH KRONECKER APPR...
收藏 引用
12th International Conference on Learning Representations, ICLR 2024
作者: Duvvuri, Sai Surya Devvrit, Fnu Anil, Rohan Hsieh, Cho-Jui Dhillon, Inderjit S. Department of Computer Science The University of Texas Austin United States Google DeepMind United Kingdom CS Department UCLA Google United States Google United States
Adaptive regularization based optimization methods such as full-matrix Adagrad which use gradient second-moment information hold significant potential for fast convergence in deep neural network (DNN) training, but ar... 详细信息
来源: 评论
When Linear Attention Meets Autoregressive Decoding: Towards More Effective and Efficient Linearized Large Language Models  41
When Linear Attention Meets Autoregressive Decoding: Towards...
收藏 引用
41st International Conference on Machine Learning, ICML 2024
作者: You, Haoran Fu, Yichao Wang, Zheng Yazdanbakhsh, Amir Lin, Yingyan School of Computer Science Georgia Institute of Technology Atlanta United States Google DeepMind Mountain View United States
Autoregressive Large Language Models (LLMs) have achieved impressive performance in language tasks but face two significant bottlenecks: (1) quadratic complexity in the attention module as the number of tokens increas... 详细信息
来源: 评论
Group Fairness in Multilingual Speech Recognition Models
Group Fairness in Multilingual Speech Recognition Models
收藏 引用
2024 Findings of the Association for Computational Linguistics: NAACL 2024
作者: van Zee, Anna Katrine van Zee, Marc Søgaard, Anders Department of Computer Science Denmark University of Copenhagen Denmark Google Deepmind United Kingdom Center for Philosophy of AI Denmark
We evaluate the performance disparity of the Whisper and MMS families of ASR models across the VoxPopuli and Common Voice multilingual datasets, with an eye toward intersectionality. Our two most important findings ar... 详细信息
来源: 评论