咨询与建议

限定检索结果

文献类型

  • 295 篇 期刊文献
  • 158 篇 会议
  • 6 册 图书

馆藏范围

  • 459 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 344 篇 工学
    • 272 篇 计算机科学与技术...
    • 190 篇 软件工程
    • 45 篇 控制科学与工程
    • 44 篇 信息与通信工程
    • 35 篇 光学工程
    • 30 篇 生物工程
    • 21 篇 生物医学工程(可授...
    • 18 篇 电气工程
    • 18 篇 电子科学与技术(可...
    • 15 篇 机械工程
    • 11 篇 化学工程与技术
    • 9 篇 材料科学与工程(可...
    • 8 篇 土木工程
    • 7 篇 力学(可授工学、理...
    • 6 篇 仪器科学与技术
    • 6 篇 建筑学
    • 6 篇 安全科学与工程
  • 180 篇 理学
    • 100 篇 数学
    • 60 篇 物理学
    • 44 篇 统计学(可授理学、...
    • 34 篇 生物学
    • 20 篇 系统科学
    • 17 篇 化学
    • 7 篇 地球物理学
  • 45 篇 管理学
    • 28 篇 管理科学与工程(可...
    • 22 篇 图书情报与档案管...
    • 17 篇 工商管理
  • 16 篇 法学
    • 16 篇 社会学
  • 7 篇 经济学
    • 7 篇 应用经济学
  • 6 篇 农学
  • 6 篇 医学
  • 3 篇 教育学
  • 2 篇 文学
  • 1 篇 哲学

主题

  • 15 篇 reinforcement le...
  • 10 篇 semantics
  • 9 篇 deep learning
  • 8 篇 approximation al...
  • 7 篇 decoding
  • 7 篇 machine learning
  • 7 篇 stochastic syste...
  • 6 篇 computer science
  • 6 篇 bayesian inferen...
  • 5 篇 adversarial mach...
  • 5 篇 speech recogniti...
  • 5 篇 complexity theor...
  • 5 篇 artificial intel...
  • 5 篇 accuracy
  • 4 篇 quantum control
  • 4 篇 deep neural netw...
  • 4 篇 quantum algorith...
  • 4 篇 neural networks
  • 4 篇 optimization
  • 4 篇 computational li...

机构

  • 71 篇 google deepmind ...
  • 48 篇 google
  • 28 篇 google deepmind
  • 26 篇 google research ...
  • 25 篇 mpi for intellig...
  • 21 篇 google research
  • 16 篇 google united st...
  • 13 篇 google inc.
  • 13 篇 deepmind united ...
  • 10 篇 department of co...
  • 10 篇 google inc. unit...
  • 9 篇 department of co...
  • 9 篇 google research ...
  • 8 篇 department of el...
  • 8 篇 department of co...
  • 8 篇 department of co...
  • 7 篇 department of co...
  • 7 篇 deepmind
  • 7 篇 heidelberg
  • 6 篇 department of el...

作者

  • 36 篇 bernhard schölko...
  • 35 篇 kevin murphy
  • 8 篇 müller klaus-rob...
  • 7 篇 farhi edward
  • 6 篇 jiang zhang
  • 6 篇 bakas spyridon
  • 6 篇 leibo joel z.
  • 6 篇 søgaard anders
  • 6 篇 menze bjoern
  • 6 篇 montavon grégoir...
  • 5 篇 summers ronald m...
  • 5 篇 baumgartner mich...
  • 5 篇 veličković petar
  • 5 篇 antonelli michel...
  • 5 篇 kopp-schneider a...
  • 5 篇 sadigh dorsa
  • 5 篇 isensee fabian
  • 5 篇 xia fei
  • 5 篇 demaine erik d.
  • 4 篇 kreshuk anna

语言

  • 395 篇 英文
  • 63 篇 其他
  • 1 篇 中文
检索条件"机构=Google DeepMind and Department of Computer Science and Technology"
459 条 记 录,以下是91-100 订阅
排序:
Boundary guided learning-free semantic control with diffusion models  23
Boundary guided learning-free semantic control with diffusio...
收藏 引用
Proceedings of the 37th International Conference on Neural Information Processing Systems
作者: Ye Zhu Yu Wu Zhiwei Deng Olga Russakovsky Yan Yan Department of Computer Science Illinois Institute of Technology and Department of Computer Science Princeton University School of Computer Science Wuhan University Google Research Department of Computer Science Princeton University Department of Computer Science Illinois Institute of Technology
Applying pre-trained generative denoising diffusion models (DDMs) for downstream tasks such as image semantic editing usually requires either fine-tuning DDMs or learning auxiliary editing networks in the existing lit...
来源: 评论
Information complexity of stochastic convex optimization: applications to generalization, memorization, and tracing  24
Information complexity of stochastic convex optimization: ap...
收藏 引用
Proceedings of the 41st International Conference on Machine Learning
作者: Idan Attias Gintare Karolina Dziugaite Mahdi Haghifam Roi Livni Daniel M. Roy Department of Computer Science Ben-Gurion University and Vector Institute Google DeepMind Khoury College of Computer Sciences Northeastern University Department of Electrical Engineering Tel Aviv University Department of Statistical Sciences University of Toronto and Vector Institute
In this work, we investigate the interplay between memorization and learning in the context of stochastic convex optimization (SCO). We define memorization via the information a learning algorithm reveals about its tr...
来源: 评论
REDUCR: Robust Data Downsampling using Class Priority Reweighting
arXiv
收藏 引用
arXiv 2023年
作者: Bankes, William Hughes, George Bogunovic, Ilija Wang, Zi Department of Computer Science University College London United Kingdom Department of Electrical Engineering University College London United Kingdom Google DeepMind United Kingdom
Modern machine learning models are becoming increasingly expensive to train for real-world image and text classification tasks, where massive web-scale data is collected in a streaming fashion. To reduce the training ... 详细信息
来源: 评论
Active Acquisition for Multimodal Temporal Data: A Challenging Decision-Making Task
arXiv
收藏 引用
arXiv 2022年
作者: Kossen, Jannik Cangea, Cătălina Vértes, Eszter Jaegle, Andrew Patraucean, Viorica Ktena, Ira Tomasev, Nenad Belgrave, Danielle OATML Department of Computer Science University of Oxford United Kingdom Google DeepMind United Kingdom
We introduce a challenging decision-making task that we call active acquisition for multimodal temporal data (A2MT). In many real-world scenarios, input features are not readily available at test time and must instead... 详细信息
来源: 评论
Learning Beyond Pattern Matching? Assaying Mathematical Understanding in LLMs
arXiv
收藏 引用
arXiv 2024年
作者: Guo, Siyuan Didolkar, Aniket Ke, Nan Rosemary Goyal, Anirudh Huszár, Ferenc Schölkopf, Bernhard Max Planck Institute for Intelligent Systems Tübingen Germany Department of Computer Science University of Cambridge United Kingdom Mila University of Montreal Canada Google DeepMind United Kingdom
We are beginning to see progress in language model assisted scientific discovery. Motivated by the use of LLMs as a general scientific assistant, this paper assesses the domain knowledge of LLMs through its understand... 详细信息
来源: 评论
Chain of Code: Reasoning with a Language Model-Augmented Code Emulator
arXiv
收藏 引用
arXiv 2023年
作者: Li, Chengshu Liang, Jacky Zeng, Andy Chen, Xinyun Hausman, Karol Sadigh, Dorsa Levine, Sergey Fei-Fei, Li Xia, Fei Ichter, Brian Department of Computer Science Stanford University CA United States Google DeepMind CA United States Department of Electrical Engineering and Computer Sciences University of California BerkeleyCA United States
Code provides a general syntactic structure to build complex programs and perform precise computations when paired with a code interpreter - we hypothesize that language models (LMs) can leverage code-writing to impro... 详细信息
来源: 评论
Addendum: Accurate structure prediction of biomolecular interactions with AlphaFold 3
收藏 引用
Nature 2024年 第8042期636卷 E4页
作者: Abramson, Josh Adler, Jonas Dunger, Jack Evans, Richard Green, Tim Pritzel, Alexander Ronneberger, Olaf Willmore, Lindsay Ballard, Andrew J. Bambrick, Joshua Bodenstein, Sebastian W. Evans, David A. Hung, Chia-Chun Reiman, David Tunyasuvunakool, Kathryn Wu, Zachary Žemgulytė, Akvilė Arvaniti, Eirini Beattie, Charles Bertolli, Ottavia Bridgland, Alex Cherepanov, Alexey Congreve, Miles Cowen-Rivers, Alexander I. Cowie, Andrew Figurnov, Michael Fuchs, Fabian B. Gladman, Hannah Jain, Rishub Khan, Yousuf A. Low, Caroline M R Perlin, Kuba Potapenko, Anna Savy, Pascal Singh, Sukhdeep Stecula, Adrian Thillaisundaram, Ashok Tong, Catherine Yakneen, Sergei Zhong, Ellen D. Zielinski, Michal Žídek, Augustin Bapst, Victor Kohli, Pushmeet Jaderberg, Max Hassabis, Demis Jumper, John M. Google DeepMind London United Kingdom Isomorphic Labs London United Kingdom Google DeepMind London United Kingdom Isomorphic Labs London United Kingdom Department of Molecular and Cellular Physiology Stanford University Stanford CA United States Department of Computer Science Princeton University Princeton NJ United States Google DeepMind London United Kingdom Isomorphic Labs London United Kingdom
来源: 评论
Computational search for materials having a giant anomalous Hall effect in the pyrochlore and spinel crystal structures
arXiv
收藏 引用
arXiv 2025年
作者: Sullivan, Sean Lee, Seungjun Szymanski, Nathan J. Merchant, Amil Cubuk, Ekin Dogus Low, Tony Bartel, Christopher J. Department of Chemical Engineering and Materials Science University of Minnesota MinneapolisMN55455 United States Department of Electrical Engineering and Computer Engineering University of Minnesota MinneapolisMN55455 United States Google DeepMind United Kingdom
Ferromagnetic pyrochlore and spinel materials with topological flat bands are of interest for their potential to exhibit a giant anomalous Hall effect (AHE). In this work, we present computational predictions of stabi... 详细信息
来源: 评论
Simplicity bias in 1-hidden layer neural networks  23
Simplicity bias in 1-hidden layer neural networks
收藏 引用
Proceedings of the 37th International Conference on Neural Information Processing Systems
作者: Depen Morwani Jatin Batra Prateek Jain Praneeth Netrapalli Department of Computer Science Harvard University School of Technology and Computer Science Tata Institute of Fundamental Research (TIFR) Google Research
Recent works (Shah et al., 2020; Chen et al., 2021) have demonstrated that neural networks exhibit extreme simplicity bias (SB). That is, they learn only the simplest features to solve a task at hand, even in the pres...
来源: 评论
Rule-Bottleneck Reinforcement Learning: Joint Explanation and Decision Optimization for Resource Allocation with Language Agents
arXiv
收藏 引用
arXiv 2025年
作者: Tec, Mauricio Xiong, Guojun Wang, Haichuan Dominici, Francesca Tambe, Milind Department of Computer Science Harvard John A. Paulson School of Engineering and Applied Sciences United States Department of Biostatistics Harvard T.H. Chan School of Public Health United States Google DeepMind United Kingdom
Deep Reinforcement Learning (RL) is remarkably effective in addressing sequential resource allocation problems in domains such as healthcare, public policy, and resource management. However, deep RL policies often lac... 详细信息
来源: 评论