咨询与建议

限定检索结果

文献类型

  • 295 篇 期刊文献
  • 158 篇 会议
  • 6 册 图书

馆藏范围

  • 459 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 344 篇 工学
    • 272 篇 计算机科学与技术...
    • 190 篇 软件工程
    • 45 篇 控制科学与工程
    • 44 篇 信息与通信工程
    • 35 篇 光学工程
    • 30 篇 生物工程
    • 21 篇 生物医学工程(可授...
    • 18 篇 电气工程
    • 18 篇 电子科学与技术(可...
    • 15 篇 机械工程
    • 11 篇 化学工程与技术
    • 9 篇 材料科学与工程(可...
    • 8 篇 土木工程
    • 7 篇 力学(可授工学、理...
    • 6 篇 仪器科学与技术
    • 6 篇 建筑学
    • 6 篇 安全科学与工程
  • 180 篇 理学
    • 100 篇 数学
    • 60 篇 物理学
    • 44 篇 统计学(可授理学、...
    • 34 篇 生物学
    • 20 篇 系统科学
    • 17 篇 化学
    • 7 篇 地球物理学
  • 45 篇 管理学
    • 28 篇 管理科学与工程(可...
    • 22 篇 图书情报与档案管...
    • 17 篇 工商管理
  • 16 篇 法学
    • 16 篇 社会学
  • 7 篇 经济学
    • 7 篇 应用经济学
  • 6 篇 农学
  • 6 篇 医学
  • 3 篇 教育学
  • 2 篇 文学
  • 1 篇 哲学

主题

  • 15 篇 reinforcement le...
  • 10 篇 semantics
  • 9 篇 deep learning
  • 8 篇 approximation al...
  • 7 篇 decoding
  • 7 篇 machine learning
  • 7 篇 stochastic syste...
  • 6 篇 computer science
  • 6 篇 bayesian inferen...
  • 5 篇 adversarial mach...
  • 5 篇 speech recogniti...
  • 5 篇 complexity theor...
  • 5 篇 artificial intel...
  • 5 篇 accuracy
  • 4 篇 quantum control
  • 4 篇 deep neural netw...
  • 4 篇 quantum algorith...
  • 4 篇 neural networks
  • 4 篇 optimization
  • 4 篇 computational li...

机构

  • 71 篇 google deepmind ...
  • 48 篇 google
  • 28 篇 google deepmind
  • 26 篇 google research ...
  • 25 篇 mpi for intellig...
  • 21 篇 google research
  • 16 篇 google united st...
  • 13 篇 google inc.
  • 13 篇 deepmind united ...
  • 10 篇 department of co...
  • 10 篇 google inc. unit...
  • 9 篇 department of co...
  • 9 篇 google research ...
  • 8 篇 department of el...
  • 8 篇 department of co...
  • 8 篇 department of co...
  • 7 篇 department of co...
  • 7 篇 deepmind
  • 7 篇 heidelberg
  • 6 篇 department of el...

作者

  • 36 篇 bernhard schölko...
  • 35 篇 kevin murphy
  • 8 篇 müller klaus-rob...
  • 7 篇 farhi edward
  • 6 篇 jiang zhang
  • 6 篇 bakas spyridon
  • 6 篇 leibo joel z.
  • 6 篇 søgaard anders
  • 6 篇 menze bjoern
  • 6 篇 montavon grégoir...
  • 5 篇 summers ronald m...
  • 5 篇 baumgartner mich...
  • 5 篇 veličković petar
  • 5 篇 antonelli michel...
  • 5 篇 kopp-schneider a...
  • 5 篇 sadigh dorsa
  • 5 篇 isensee fabian
  • 5 篇 xia fei
  • 5 篇 demaine erik d.
  • 4 篇 kreshuk anna

语言

  • 395 篇 英文
  • 63 篇 其他
  • 1 篇 中文
检索条件"机构=Google DeepMind and Department of Computer Science and Technology"
459 条 记 录,以下是101-110 订阅
排序:
A Global–Local Attentive Relation Detection Model for Knowledge-Based Question Answering
IEEE Transactions on Artificial Intelligence
收藏 引用
IEEE Transactions on Artificial Intelligence 2021年 第2期2卷 200-212页
作者: Qiu, Chen Zhou, Guangyou Cai, Zhihua Søgaard, Anders School of Computer Science and Technology Wuhan University of Science and Technology Wuhan430081 China School of Computer Science Central China Normal University Wuhan430079 China School of Computer Science China University of Geosciences Wuhan430074 China Department of Computer Science University of Copenhagen Copenhagen1165 Denmark Google Research Copenhagen1353 Denmark
Knowledge-based question answering (KBQA) is an essential but challenging task for artificial intelligence and natural language processing. A key challenge pertains to the design of effective algorithms for relation d... 详细信息
来源: 评论
Information Complexity of Stochastic Convex Optimization: Applications to Generalization and Memorization
arXiv
收藏 引用
arXiv 2024年
作者: Attias, Idan Dziugaite, Gintare Karolina Haghifam, Mahdi Livni, Roi Roy, Daniel M. Department of Computer Science Ben-Gurion University Vector Institute Google DeepMind United Kingdom Khoury College of Computer Sciences Northeastern University United States Department of Electrical Engineering Tel Aviv University Department of Statistical Sciences University of Toronto Vector Institute Canada
In this work, we investigate the interplay between memorization and learning in the context of stochastic convex optimization (SCO). We define memorization via the information a learning algorithm reveals about its tr... 详细信息
来源: 评论
REVEALING THE 3D COSMIC WEB THROUGH GRAVITATIONALLY CONSTRAINED NEURAL FIELDS
arXiv
收藏 引用
arXiv 2025年
作者: Zhao, Brandon Levis, Aviad Connor, Liam Srinivasan, Pratul P. Bouman, Katherine L. Department of Computing and Mathematical Sciences California Institute of Technology United States Department of Computer Science University of Toronto Canada David A. Dunlap Department of Astronomy & Astrophysics University of Toronto Canada Center for Astrophysics Harvard & Smithsonian United States Google DeepMind United Kingdom Departments of Astronomy and Electrical Engineering California Institute of Technology United States
Weak gravitational lensing is the slight distortion of galaxy shapes caused primarily by the gravitational effects of dark matter in the universe. In our work, we seek to invert the weak lensing signal from 2D telesco... 详细信息
来源: 评论
MORE EXPERTS THAN GALAXIES: CONDITIONALLY-OVERLAPPING EXPERTS WITH BIOLOGICALLY-INSPIRED FIXED ROUTING
arXiv
收藏 引用
arXiv 2024年
作者: Shaier, Sagi Pereira, Francisco von der Wense, Katharina Hunter, Lawrence E. Jones, Matt Department of Computer Science University of Colorado Boulder United States Machine Learning Core National Institute of Mental Health United States Department of Computer Science University of Colorado Boulder Institute of Computer Science Johannes Gutenberg University Mainz Germany Department of Pediatrics University of Chicago United States Department of Psychology and Neuroscience University of Colorado Boulder Google DeepMind United States
The evolution of biological neural systems has led to both modularity and sparse coding, which enables energy efficiency and robustness across the diversity of tasks in the lifespan. In contrast, standard neural netwo... 详细信息
来源: 评论
Generative Agent Simulations of 1,000 People
arXiv
收藏 引用
arXiv 2024年
作者: Park, Joon Sung Zou, Carolyn Q. Shaw, Aaron Hill, Benjamin Mako Cai, Carrie Morris, Meredith Ringel Willer, Robb Liang, Percy Bernstein, Michael S. Computer Science Department Stanford University StanfordCA94305 United States Department of Communication Studies Northwestern University EvanstonIL60208 United States Department of Communication University of Washington SeattleWA98195 United States Google DeepMind Mountain ViewCA94043 United States Google DeepMind SeattleWA98195 United States Department of Sociology Stanford University StanfordCA94305 United States
The promise of human behavioral simulation—general-purpose computational agents that replicate human behavior across domains—could enable broad applications in policymaking and social science. We present a novel age... 详细信息
来源: 评论
Boundary Guided Learning-Free Semantic Control with Diffusion Models
arXiv
收藏 引用
arXiv 2023年
作者: Zhu, Ye Wu, Yu Deng, Zhiwei Russakovsky, Olga Yan, Yan Department of Computer Science Illinois Institute of Technology United States Department of Computer Science Princeton University United States School of Computer Science Wuhan University China Google Research United States
Applying pre-trained generative denoising diffusion models (DDMs) for downstream tasks such as image semantic editing usually requires either fine-tuning DDMs or learning auxiliary editing networks in the existing lit... 详细信息
来源: 评论
Would I have gotten that reward? Long-term credit assignment by counterfactual contribution analysis
arXiv
收藏 引用
arXiv 2023年
作者: Meulemans, Alexander Schug, Simon Kobayashi, Seijin Daw, Nathaniel D. Wayne, Gregory Department of Computer Science ETH Zürich Switzerland Google DeepMind United Kingdom Princeton Neuroscience Institute Princeton University United States Department of Psychology Princeton University United States
To make reinforcement learning more sample efficient, we need better credit assignment methods that measure an action’s influence on future rewards. Building upon Hindsight Credit Assignment (HCA) [1], we introduce C... 详细信息
来源: 评论
Tree-D Fusion: Simulation-Ready Tree Dataset from Single Images with Diffusion Priors
arXiv
收藏 引用
arXiv 2024年
作者: Lee, Jae Joong Li, Bosheng Beery, Sara Huang, Jonathan Fei, Songlin Yeh, Raymond A. Benes, Bedrich Purdue University Department of Computer Science United States Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science United States Google United States Purdue University Department of Forestry Natural Resources United States
We introduce Tree-D Fusion, featuring the first collection of 600,000 environmentally aware, 3D simulation-ready tree models generated through Diffusion priors. Each reconstructed 3D tree model corresponds to an image... 详细信息
来源: 评论
LoopTree: Exploring the Fused-Layer Dataflow Accelerator Design Space
IEEE Transactions on Circuits and Systems for Artificial Int...
收藏 引用
IEEE Transactions on Circuits and Systems for Artificial Intelligence 2024年 第1期1卷 97-111页
作者: Michael Gilbert Yannan Nellie Wu Joel S. Emer Vivienne Sze Department of Electrical Engineering and Computer Science School of Engineering Massachusetts Institute of Technology Cambridge MA USA Google Mountain View CA USA NVIDIA Santa Clara CA USA
Latency and energy consumption are key metrics in the performance of deep neural network (DNN) accelerators. A significant factor contributing to latency and energy is data transfers. One method to reduce transfers or... 详细信息
来源: 评论
MambaLRP: Explaining Selective State Space Sequence Models  38
MambaLRP: Explaining Selective State Space Sequence Models
收藏 引用
38th Conference on Neural Information Processing Systems, NeurIPS 2024
作者: Jafari, Farnoush Rezaei Montavon, Grégoire Müller, Klaus-Robert Eberle, Oliver Machine Learning Group Technische Universität Berlin Berlin10587 Germany BIFOLD - Berlin Institute for the Foundations of Learning and Data Berlin10587 Germany Department of Mathematics and Computer Science Freie Universität Berlin Arnimallee 14 Berlin14195 Germany Department of Artificial Intelligence Korea University Seoul136-713 Korea Republic of Max Planck Institute for Informatics Stuhlsatzenhausweg 4 Saarbrücken66123 Germany Google DeepMind Berlin Germany
Recent sequence modeling approaches using selective state space sequence models, referred to as Mamba models, have seen a surge of interest. These models allow efficient processing of long sequences in linear time and...
来源: 评论