咨询与建议

限定检索结果

文献类型

  • 295 篇 期刊文献
  • 158 篇 会议
  • 6 册 图书

馆藏范围

  • 459 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 344 篇 工学
    • 272 篇 计算机科学与技术...
    • 190 篇 软件工程
    • 45 篇 控制科学与工程
    • 44 篇 信息与通信工程
    • 35 篇 光学工程
    • 30 篇 生物工程
    • 21 篇 生物医学工程(可授...
    • 18 篇 电气工程
    • 18 篇 电子科学与技术(可...
    • 15 篇 机械工程
    • 11 篇 化学工程与技术
    • 9 篇 材料科学与工程(可...
    • 8 篇 土木工程
    • 7 篇 力学(可授工学、理...
    • 6 篇 仪器科学与技术
    • 6 篇 建筑学
    • 6 篇 安全科学与工程
  • 180 篇 理学
    • 100 篇 数学
    • 60 篇 物理学
    • 44 篇 统计学(可授理学、...
    • 34 篇 生物学
    • 20 篇 系统科学
    • 17 篇 化学
    • 7 篇 地球物理学
  • 45 篇 管理学
    • 28 篇 管理科学与工程(可...
    • 22 篇 图书情报与档案管...
    • 17 篇 工商管理
  • 16 篇 法学
    • 16 篇 社会学
  • 7 篇 经济学
    • 7 篇 应用经济学
  • 6 篇 农学
  • 6 篇 医学
  • 3 篇 教育学
  • 2 篇 文学
  • 1 篇 哲学

主题

  • 15 篇 reinforcement le...
  • 10 篇 semantics
  • 9 篇 deep learning
  • 8 篇 approximation al...
  • 7 篇 decoding
  • 7 篇 machine learning
  • 7 篇 stochastic syste...
  • 6 篇 computer science
  • 6 篇 bayesian inferen...
  • 5 篇 adversarial mach...
  • 5 篇 speech recogniti...
  • 5 篇 complexity theor...
  • 5 篇 artificial intel...
  • 5 篇 accuracy
  • 4 篇 quantum control
  • 4 篇 deep neural netw...
  • 4 篇 quantum algorith...
  • 4 篇 neural networks
  • 4 篇 optimization
  • 4 篇 computational li...

机构

  • 71 篇 google deepmind ...
  • 48 篇 google
  • 28 篇 google deepmind
  • 26 篇 google research ...
  • 25 篇 mpi for intellig...
  • 21 篇 google research
  • 16 篇 google united st...
  • 13 篇 google inc.
  • 13 篇 deepmind united ...
  • 10 篇 department of co...
  • 10 篇 google inc. unit...
  • 9 篇 department of co...
  • 9 篇 google research ...
  • 8 篇 department of el...
  • 8 篇 department of co...
  • 8 篇 department of co...
  • 7 篇 department of co...
  • 7 篇 deepmind
  • 7 篇 heidelberg
  • 6 篇 department of el...

作者

  • 36 篇 bernhard schölko...
  • 35 篇 kevin murphy
  • 8 篇 müller klaus-rob...
  • 7 篇 farhi edward
  • 6 篇 jiang zhang
  • 6 篇 bakas spyridon
  • 6 篇 leibo joel z.
  • 6 篇 søgaard anders
  • 6 篇 menze bjoern
  • 6 篇 montavon grégoir...
  • 5 篇 summers ronald m...
  • 5 篇 baumgartner mich...
  • 5 篇 veličković petar
  • 5 篇 antonelli michel...
  • 5 篇 kopp-schneider a...
  • 5 篇 sadigh dorsa
  • 5 篇 isensee fabian
  • 5 篇 xia fei
  • 5 篇 demaine erik d.
  • 4 篇 kreshuk anna

语言

  • 395 篇 英文
  • 63 篇 其他
  • 1 篇 中文
检索条件"机构=Google DeepMind and Department of Computer Science and Technology"
459 条 记 录,以下是111-120 订阅
排序:
Generating Diverse Criteria On-the-Fly to Improve Pointwise LLM Rankers
arXiv
收藏 引用
arXiv 2024年
作者: Guo, Fang Li, Wenyu Zhuang, Honglei Luo, Yun Li, Yafu Zhu, Qi Yan, Le Zhang, Yue Department of Engineering Westlake University China Department of Future Technology South China University of Technology China Google Reserach Department of Computer Science University of Illinois at Urbana-Champaign United States
The most recent pointwise Large Language Model (LLM) rankers have achieved remarkable ranking results. However, these rankers are hindered by two major drawbacks: (1) they fail to follow a standardized comparison guid... 详细信息
来源: 评论
Randomized Entity-wise Factorization for Multi-Agent Reinforcement Learning  38
Randomized Entity-wise Factorization for Multi-Agent Reinfor...
收藏 引用
38th International Conference on Machine Learning, ICML 2021
作者: Iqbal, Shariq Schroeder de Witt, Christian A. Peng, Bei Böhmer, Wendelin Whiteson, Shimon Sha, Fei Department of Computer Science University of Southern California United States Department of Computer Science University of Oxford United Kingdom Department of Software Technology Delft University of Technology Netherlands Google Research
Multi-agent settings in the real world often involve tasks with varying types and quantities of agents and non-agent entities;however, common patterns of behavior often emerge among these agents/entities. Our method a... 详细信息
来源: 评论
Scaling and logic in the color code on a superconducting quantum processor
arXiv
收藏 引用
arXiv 2024年
作者: Lacroix, Nathan Bourassa, Alexandre Heras, Francisco J.H. Zhang, Lei M. Bausch, Johannes Senior, Andrew W. Edlich, Thomas Shutty, Noah Sivak, Volodymyr Bengtsson, Andreas McEwen, Matt Higgott, Oscar Kafri, Dvir Claes, Jahan Morvan, Alexis Chen, Zijun Zalcman, Adam Madhuk, Sid Acharya, Rajeev Beni, Laleh Aghababaie Aigeldinger, Georg Alcaraz, Ross Andersen, Trond I. Ansmann, Markus Arute, Frank Arya, Kunal Asfaw, Abraham Atalaya, Juan Babbush, Ryan Ballard, Brian Bardin, Joseph C. Bilmes, Alexander Blackwell, Sam Bovaird, Jenna Bowers, Dylan Brill, Leon Broughton, Michael Browne, David A. Buchea, Brett Buckley, Bob B. Burger, Tim Burkett, Brian Bushnell, Nicholas Cabrera, Anthony Campero, Juan Chang, Hung-Shen Chiaro, Ben Chih, Liang-Ying Cleland, Agnetta Y. Cogan, Josh Collins, Roberto Conner, Paul Courtney, William Crook, Alexander L. Curtin, Ben Das, Sayan Demura, Sean De Lorenzo, Laura Di Paolo, Agustin Donohoe, Paul Drozdov, Ilya Dunsworth, Andrew Eickbusch, Alec Elbag, Aviv Moshe Elzouka, Mahmoud Erickson, Catherine Ferreira, Vinicius S. Burgos, Leslie Flores Forati, Ebrahim Fowler, Austin G. Foxen, Brooks Ganjam, Suhas Garcia, Gonzalo Gasca, Robert Genois, Élie Giang, William Gilboa, Dar Gosula, Raja Dau, Alejandro Grajales Graumann, Dietrich Greene, Alex Gross, Jonathan A. Ha, Tan Habegger, Steve Hansen, Monica Harrigan, Matthew P. Harrington, Sean D. Heslin, Stephen Heu, Paula Hiltermann, Reno Hilton, Jeremy Hong, Sabrina Huang, Hsin-Yuan Huff, Ashley Huggins, William J. Jeffrey, Evan Jiang, Zhang Jin, Xiaoxuan Joshi, Chaitali Juhas, Pavol Kabel, Andreas Kang, Hui Karamlou, Amir H. Kechedzhi, Kostyantyn Khaire, Trupti Khattar, Tanuj Khezri, Mostafa Kim, Seon Klimov, Paul V. Kobrin, Bryce Korotkov, Alexander N. Kostritsa, Fedor Kreikebaum, John Mark Kurilovich, Vladislav D. Landhuis, David Lange-Dei, Tiano Langley, Brandon W. Laptev, Pavel Lau, Kim-Ming Ledford, Justin Lee, Kenny Lester, Brian J. Le Guevel, Loïck Li, Wing Yan Li, Yin Lill, Alexander T. Livingston, William P. Locharla, Aditya Lucero, Erik L Google Research Mountain ViewCA United States Department of Physics ETH Zurich Switzerland Google DeepMind London United Kingdom Department of Electrical and Computer Engineering University of Massachusetts AmherstMA United States Department of Physics University of Connecticut StorrsCT United States Department of Computer Science University of California Santa BarbaraCA United States Research Laboratory of Electronics Massachusetts Institute of Technology CambridgeMA United States Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology CambridgeMA United States Department of Physics Massachusetts Institute of Technology CambridgeMA United States
Quantum error correction [1-6] is essential for bridging the gap between the error rates of physical devices and the extremely low logical error rates required for quantum algorithms. Recent error-correction demonstra... 详细信息
来源: 评论
Midgame Attacks and Defense Against Them  7th
Midgame Attacks and Defense Against Them
收藏 引用
7th International Symposium on Cyber Security, Cryptology, and Machine Learning, CSCML 2023
作者: Chang, Donghoon Yung, Moti National Institute of Standards and Technology GaithersburgMD United States Strativia LargoMD United States Delhi India Google Inc. Mountain View United States Department of Computer Science Columbia University New York United States
In this paper, we propose the Midgame Security attack model, where it is assumed that at some point in the middle of computation with a secret key, and after some secure work (typically but not necessarily initial one... 详细信息
来源: 评论
Auto-Linear Phenomenon in Subsurface Imaging  41
Auto-Linear Phenomenon in Subsurface Imaging
收藏 引用
41st International Conference on Machine Learning, ICML 2024
作者: Feng, Yinan Chen, Yinpeng Jin, Peng Feng, Shihang Lin, Youzuo Department of Computer Science The University of North Carolina Chapel Hill United States Google Research United States College of Information Sciences and Technology The Pennsylvania State University United States Earth and Environmental Sciences Division Los Alamos National Laboratory United States School of Data Science and Society The University of North Carolina Chapel Hill United States
Subsurface imaging involves solving full waveform inversion (FWI) to predict geophysical properties from measurements. This problem can be reframed as an image-to-image translation, with the usual approach being to tr... 详细信息
来源: 评论
How Many Ratings per Item are Necessary for Reliable Significance Testing?
arXiv
收藏 引用
arXiv 2024年
作者: Homan, Christopher M. Korn, Flip Welty, Chris Department of Computer Science Rochester Institute of Technology RochesterNY14607 United States Google Research New YorkNY10011 United States
Most approaches to machine learning evaluation assume that machine and human responses are repeatable enough to be measured against data with unitary, authoritative, "gold standard" responses, via simple met... 详细信息
来源: 评论
Simplicity Bias in 1-Hidden Layer Neural Networks
arXiv
收藏 引用
arXiv 2023年
作者: Morwani, Depen Batra, Jatin Jain, Prateek Netrapalli, Praneeth Department of Computer Science Harvard University CambridgeMA United States School of Technology and Computer Science TIFR Mumbai India Google Research Bengaluru India Alphabetical ordering
Recent works (Shah et al., 2020;Chen et al., 2021) have demonstrated that neural networks exhibit extreme simplicity bias (SB). That is, they learn only the simplest features to solve a task at hand, even in the prese... 详细信息
来源: 评论
Insufficient Statistics Perturbation: Stable Estimators for Private Least Squares
arXiv
收藏 引用
arXiv 2024年
作者: Brown, Gavin Hayase, Jonathan Hopkins, Samuel Kong, Weihao Liu, Xiyang Oh, Sewoong Perdomo, Juan C. Smith, Adam Paul G. Allen School of Computer Science and Engineering University of Washington United States Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology United States Google Research United States Harvard University United States Department of Computer Science Boston University United States
We present a sample- and time-efficient differentially private algorithm for ordinary least squares, with error that depends linearly on the dimension and is independent of the condition number of XX, where X is the d... 详细信息
来源: 评论
Mirror Descent Algorithms with Nearly Dimension-Independent Rates for Differentially-Private Stochastic Saddle-Point Problems
arXiv
收藏 引用
arXiv 2024年
作者: González, Tomás Guzmán, Cristóbal Paquette, Courtney Machine Learning Department School of Computer Science Carnegie Mellon University United States Institute for Mathematical and Computational Engineering Faculty of Mathematics School of Engineering Pontificia Universidad Católica de Chile Chile Department of Mathematics and Statistics McGill University Google Deepmind Canada
We study the problem of differentially-private (DP) stochastic (convex-concave) saddle-points in the polyhedral setting. We propose (Ε, δ)-DP algorithms based on stochastic mirror descent that attain nearly dimensio... 详细信息
来源: 评论
Decoding Visual Experience and Mapping Semantics through Whole-Brain Analysis Using fMRI Foundation Models
arXiv
收藏 引用
arXiv 2024年
作者: Wang, Yanchen Turnbull, Adam Xiang, Tiange Xu, Yunlong Zhou, Sa Masoud, Adnan Azizi, Shekoofeh Lin, Feng Vankee Adeli, Ehsan Department of Psychiatry and Behavioral Sciences Stanford University StanfordCA United States Department of Computer Science Stanford University StanfordCA United States Department of Neurobiology University of Chicago ChicagoIL United States UST TampaFL United States Google DeepMind TorontoON Canada
Neural decoding, the process of understanding how brain activity corresponds to different stimuli, has been a primary objective in cognitive sciences. Over the past three decades, advancements in functional Magnetic R... 详细信息
来源: 评论