咨询与建议

限定检索结果

文献类型

  • 295 篇 期刊文献
  • 158 篇 会议
  • 6 册 图书

馆藏范围

  • 459 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 344 篇 工学
    • 272 篇 计算机科学与技术...
    • 190 篇 软件工程
    • 45 篇 控制科学与工程
    • 44 篇 信息与通信工程
    • 35 篇 光学工程
    • 30 篇 生物工程
    • 21 篇 生物医学工程(可授...
    • 18 篇 电气工程
    • 18 篇 电子科学与技术(可...
    • 15 篇 机械工程
    • 11 篇 化学工程与技术
    • 9 篇 材料科学与工程(可...
    • 8 篇 土木工程
    • 7 篇 力学(可授工学、理...
    • 6 篇 仪器科学与技术
    • 6 篇 建筑学
    • 6 篇 安全科学与工程
  • 180 篇 理学
    • 100 篇 数学
    • 60 篇 物理学
    • 44 篇 统计学(可授理学、...
    • 34 篇 生物学
    • 20 篇 系统科学
    • 17 篇 化学
    • 7 篇 地球物理学
  • 45 篇 管理学
    • 28 篇 管理科学与工程(可...
    • 22 篇 图书情报与档案管...
    • 17 篇 工商管理
  • 16 篇 法学
    • 16 篇 社会学
  • 7 篇 经济学
    • 7 篇 应用经济学
  • 6 篇 农学
  • 6 篇 医学
  • 3 篇 教育学
  • 2 篇 文学
  • 1 篇 哲学

主题

  • 15 篇 reinforcement le...
  • 10 篇 semantics
  • 9 篇 deep learning
  • 8 篇 approximation al...
  • 7 篇 decoding
  • 7 篇 machine learning
  • 7 篇 stochastic syste...
  • 6 篇 computer science
  • 6 篇 bayesian inferen...
  • 5 篇 adversarial mach...
  • 5 篇 speech recogniti...
  • 5 篇 complexity theor...
  • 5 篇 artificial intel...
  • 5 篇 accuracy
  • 4 篇 quantum control
  • 4 篇 deep neural netw...
  • 4 篇 quantum algorith...
  • 4 篇 neural networks
  • 4 篇 optimization
  • 4 篇 computational li...

机构

  • 71 篇 google deepmind ...
  • 48 篇 google
  • 28 篇 google deepmind
  • 26 篇 google research ...
  • 25 篇 mpi for intellig...
  • 21 篇 google research
  • 16 篇 google united st...
  • 13 篇 google inc.
  • 13 篇 deepmind united ...
  • 10 篇 department of co...
  • 10 篇 google inc. unit...
  • 9 篇 department of co...
  • 9 篇 google research ...
  • 8 篇 department of el...
  • 8 篇 department of co...
  • 8 篇 department of co...
  • 7 篇 department of co...
  • 7 篇 deepmind
  • 7 篇 heidelberg
  • 6 篇 department of el...

作者

  • 36 篇 bernhard schölko...
  • 35 篇 kevin murphy
  • 8 篇 müller klaus-rob...
  • 7 篇 farhi edward
  • 6 篇 jiang zhang
  • 6 篇 bakas spyridon
  • 6 篇 leibo joel z.
  • 6 篇 søgaard anders
  • 6 篇 menze bjoern
  • 6 篇 montavon grégoir...
  • 5 篇 summers ronald m...
  • 5 篇 baumgartner mich...
  • 5 篇 veličković petar
  • 5 篇 antonelli michel...
  • 5 篇 kopp-schneider a...
  • 5 篇 sadigh dorsa
  • 5 篇 isensee fabian
  • 5 篇 xia fei
  • 5 篇 demaine erik d.
  • 4 篇 kreshuk anna

语言

  • 395 篇 英文
  • 63 篇 其他
  • 1 篇 中文
检索条件"机构=Google DeepMind and Department of Computer Science and Technology"
459 条 记 录,以下是121-130 订阅
排序:
Optimal and instance-dependent guarantees for Markovian linear stochastic approximation
收藏 引用
Mathematical Statistics and Learning 2024年 第1-2期7卷 41-153页
作者: Mou, Wenlong Pananjady, Ashwin Wainwright, Martin J. Bartlett, Peter L. Department of Statistical Sciences and Vector Institute for Artificial Intelligence University of Toronto 700 University Avenue Toronto M5G 1X6 Canada School of ISyE and School of ECE Georgia Institute of Technology 765 Ferst Dr. NW Atlanta 30332 GA United States Department of EECS Department of Mathematics Laboratory for Information and Decision Systems and Statistics and Data Science Center Massachusetts Institute of Technology 32 Vassar Street Cambridge 02139 MA United States Department of EECS and Department of Statistics University of California 367 Evans Hall Berkeley 94720 CA United States Google DeepMind 1600 Amphitheatre Parkway Mountain View 94043 CA United States
We study stochastic approximation procedures for approximately solving a d-dimensional linear fixed-point equation based on observing a trajectory of length n from an ergodic d Markov chain. We first exhibit a non-asy... 详细信息
来源: 评论
A Survey of Neural Code Intelligence: Paradigms, Advances and Beyond
arXiv
收藏 引用
arXiv 2024年
作者: Sun, Qiushi Chen, Zhirui Xu, Fangzhi Cheng, Kanzhi Ma, Chang Yin, Zhangyue Wang, Jianing Han, Chengcheng Zhu, Renyu Yuan, Shuai Guo, Qipeng Qiu, Xipeng Yin, Pengcheng Li, Xiaoli Yuan, Fei Kong, Lingpeng Li, Xiang Wu, Zhiyong Shanghai AI Laboratory Shanghai China School of Data Science and Engineering East China Normal University Shanghai China School of Computer Science Fudan University Shanghai China NetEase Fuxi AI Lab Zhejiang China Google DeepMind Mountain ViewCA United States Singapore School of Computer Science and Engineering Nanyang Technological University Singapore Department of Computer Science The University of Hong Kong Hong Kong
Neural Code Intelligence – leveraging deep learning to understand, generate, and optimize code – holds immense potential for transformative impacts on the whole society. Bridging the gap between Natural Language and... 详细信息
来源: 评论
The Odyssey Journey: Top-Tier Medical Resource Seeking for Specialized Disorder in China
arXiv
收藏 引用
arXiv 2024年
作者: Chan, Ka I. Hu, Siying Wang, Yuntao Xu, Xuhai Lu, Zhicong Shi, Yuanchun Institute Tsinghua University Beijing China Department of Computer Science City University of Hong Kong Hong Kong Key Laboratory of Pervasive Computing Ministry of Education Department of Computer Science and Technology Tsinghua University Beijing China School of Computer Science and Technology Qinghai University Xining China Google New York CityNY United States Department of Computer Science George Mason University FairfaxVA United States Department of Computer Science and Technology Beijing National Research Center for Information Science and Technology Tsinghua University Beijing China Qinghai University Xining China
It is pivotal for patients to receive accurate health information, diagnoses, and timely treatments. However, in China, the significant imbalanced doctor-to-patient ratio intensifies the information and power asymmetr... 详细信息
来源: 评论
Synthetic Data Generation & Multi-Step RL for Reasoning & Tool Use
arXiv
收藏 引用
arXiv 2025年
作者: Goldie, Anna Mirhoseini, Azalia Zhou, Hao Cai, Irene Manning, Christopher D. Department of Computer Science Stanford University United States Google DeepMind United Kingdom
Reinforcement learning has been shown to improve the performance of large language models. However, traditional approaches like RLHF or RLAIF treat the problem as single-step. As focus shifts toward more complex reaso... 详细信息
来源: 评论
Robust Knowledge Distillation from RNN-T Models with Noisy Training Labels Using Full-Sum Loss
Robust Knowledge Distillation from RNN-T Models with Noisy T...
收藏 引用
International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
作者: Mohammad Zeineldeen Kartik Audhkhasi Murali Karthick Baskar Bhuvana Ramabhadran Computer Science Department Human Language Technology and Pattern Recognition RWTH Aachen University Aachen Germany Google LLC New York
This work studies knowledge distillation (KD) and addresses its constraints for recurrent neural network transducer (RNN-T) models. In hard distillation, a teacher model transcribes large amounts of unlabelled speech ... 详细信息
来源: 评论
Preprocessors Matter! Realistic Decision-Based Attacks on Machine Learning Systems
arXiv
收藏 引用
arXiv 2022年
作者: Sitawarin, Chawin Tramèr, Florian Carlini, Nicholas Department of Computer Science University of California Berkeley United States ETH Zürich Zürich Switzerland Google DeepMind Mountain View United States
Decision-based attacks construct adversarial examples against a machine learning (ML) model by making only hard-label queries. These attacks have mainly been applied directly to standalone neural networks. However, in... 详细信息
来源: 评论
Variance-Dependent Regret Bounds for Linear Bandits and Reinforcement Learning: Adaptivity and Computational Efficiency
arXiv
收藏 引用
arXiv 2023年
作者: Zhao, Heyang He, Jiafan Zhou, Dongruo Zhang, Tong Gu, Quanquan Department of Computer Science University of California Los AngelesCA90095 United States Google Research The Hong Kong University of Science and Technology Hong Kong
Recently, several studies (Zhou et al., 2021a;Zhang et al., 2021b;Kim et al., 2021;Zhou and Gu, 2022) have provided variance-dependent regret bounds for linear contextual bandits, which interpolates the regret for the... 详细信息
来源: 评论
Span Attention for Entity-Consistent Task-Oriented Dialogue Response Generation
Span Attention for Entity-Consistent Task-Oriented Dialogue ...
收藏 引用
International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
作者: Jiale Chen Xuelian Dong Wenxiu Xie Tao Gong Fu Lee Wang Tianyong Hao School of Computer Science South China Normal University Guangzhou China Department of Computer Science City University of Hong Kong Hong Kong China Google Inc. New York USA School of Science and Technology Hong Kong Metropolitan University Hong Kong China
Task-oriented dialogue systems have recently gained increasing attention due to their capability of using natural language to fulfill specific user demands, such as restaurant reservation and hotel booking. Recent wor... 详细信息
来源: 评论
Bidirectional Human-AI Alignment: Emerging Challenges and Opportunities
Bidirectional Human-AI Alignment: Emerging Challenges and Op...
收藏 引用
2025 CHI Conference on Human Factors in Computing Systems, CHI EA 2025
作者: Shen, Hua Knearem, Tiffany Ghosh, Reshmi Liu, Michael Xieyang Monroy-Hernández, Andrés Wu, Tongshuang Yang, Diyi Huang, Yun Mitra, Tanushree Li, Yang Hearst, Marti The Information School University of Washington Seattle WA United States Google San Francisco CA United States Microsoft Corp Microsoft AI Development Acceleration Program Cambridge MA United States Google DeepMind Pittsburgh PA United States Princeton University Princeton NJ United States Human-Computer Interaction Institute Carnegie Mellon University Pittsburgh PA United States Computer Science Department Stanford University Stanford CA United States School of Information Sciences University of Illinois at Urbana-Champaign Champaign IL United States University of Washington Seattle WA United States Google Research Mountain View CA United States UC Berkeley Berkeley CA United States
Recent advancements in general-purpose AI have highlighted the urgent need to align AI systems with the goals, ethical principles, and values of individuals and society. Existing alignment research has been primarily ... 详细信息
来源: 评论
Decoupling Semantic Similarity from Spatial Alignment for Neural Networks
arXiv
收藏 引用
arXiv 2024年
作者: Wald, Tassilo Ulrich, Constantin Köhler, Gregor Zimmerer, David Denner, Stefan Baumgartner, Michael Isensee, Fabian Jaini, Priyank Maier-Hein, Klaus H. Heidelberg Germany Helmholtz Imaging DKFZ Heidelberg Germany Faculty of Mathematics and Computer Science University of Heidelberg Germany Medical Faculty Heidelberg University of Heidelberg Germany Google Deepmind United Kingdom Pattern Analysis and Learning Group Department of Radiation Oncology Germany Heidelberg Germany
What representation do deep neural networks learn? How similar are images to each other for neural networks? Despite the overwhelming success of deep learning methods key questions about their internal workings still ... 详细信息
来源: 评论