咨询与建议

限定检索结果

文献类型

  • 295 篇 期刊文献
  • 158 篇 会议
  • 6 册 图书

馆藏范围

  • 459 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 344 篇 工学
    • 272 篇 计算机科学与技术...
    • 190 篇 软件工程
    • 45 篇 控制科学与工程
    • 44 篇 信息与通信工程
    • 35 篇 光学工程
    • 30 篇 生物工程
    • 21 篇 生物医学工程(可授...
    • 18 篇 电气工程
    • 18 篇 电子科学与技术(可...
    • 15 篇 机械工程
    • 11 篇 化学工程与技术
    • 9 篇 材料科学与工程(可...
    • 8 篇 土木工程
    • 7 篇 力学(可授工学、理...
    • 6 篇 仪器科学与技术
    • 6 篇 建筑学
    • 6 篇 安全科学与工程
  • 180 篇 理学
    • 100 篇 数学
    • 60 篇 物理学
    • 44 篇 统计学(可授理学、...
    • 34 篇 生物学
    • 20 篇 系统科学
    • 17 篇 化学
    • 7 篇 地球物理学
  • 45 篇 管理学
    • 28 篇 管理科学与工程(可...
    • 22 篇 图书情报与档案管...
    • 17 篇 工商管理
  • 16 篇 法学
    • 16 篇 社会学
  • 7 篇 经济学
    • 7 篇 应用经济学
  • 6 篇 农学
  • 6 篇 医学
  • 3 篇 教育学
  • 2 篇 文学
  • 1 篇 哲学

主题

  • 15 篇 reinforcement le...
  • 10 篇 semantics
  • 9 篇 deep learning
  • 8 篇 approximation al...
  • 7 篇 decoding
  • 7 篇 machine learning
  • 7 篇 stochastic syste...
  • 6 篇 computer science
  • 6 篇 bayesian inferen...
  • 5 篇 adversarial mach...
  • 5 篇 speech recogniti...
  • 5 篇 complexity theor...
  • 5 篇 artificial intel...
  • 5 篇 accuracy
  • 4 篇 quantum control
  • 4 篇 deep neural netw...
  • 4 篇 quantum algorith...
  • 4 篇 neural networks
  • 4 篇 optimization
  • 4 篇 computational li...

机构

  • 71 篇 google deepmind ...
  • 48 篇 google
  • 28 篇 google deepmind
  • 26 篇 google research ...
  • 25 篇 mpi for intellig...
  • 21 篇 google research
  • 16 篇 google united st...
  • 13 篇 google inc.
  • 13 篇 deepmind united ...
  • 10 篇 department of co...
  • 10 篇 google inc. unit...
  • 9 篇 department of co...
  • 9 篇 google research ...
  • 8 篇 department of el...
  • 8 篇 department of co...
  • 8 篇 department of co...
  • 7 篇 department of co...
  • 7 篇 deepmind
  • 7 篇 heidelberg
  • 6 篇 department of el...

作者

  • 36 篇 bernhard schölko...
  • 35 篇 kevin murphy
  • 8 篇 müller klaus-rob...
  • 7 篇 farhi edward
  • 6 篇 jiang zhang
  • 6 篇 bakas spyridon
  • 6 篇 leibo joel z.
  • 6 篇 søgaard anders
  • 6 篇 menze bjoern
  • 6 篇 montavon grégoir...
  • 5 篇 summers ronald m...
  • 5 篇 baumgartner mich...
  • 5 篇 veličković petar
  • 5 篇 antonelli michel...
  • 5 篇 kopp-schneider a...
  • 5 篇 sadigh dorsa
  • 5 篇 isensee fabian
  • 5 篇 xia fei
  • 5 篇 demaine erik d.
  • 4 篇 kreshuk anna

语言

  • 395 篇 英文
  • 63 篇 其他
  • 1 篇 中文
检索条件"机构=Google DeepMind and Department of Computer Science and Technology"
459 条 记 录,以下是131-140 订阅
排序:
When is Momentum Extragradient Optimal? A Polynomial-Based Analysis
arXiv
收藏 引用
arXiv 2022年
作者: Kim, Junhyung Lyle Gidel, Gauthier Kyrillidis, Anastasios Pedregosa, Fabian Rice University Department of Computer Science United States Université de Montréal Department of Computer Science and Operations Research Mila – Quebec AI Institute Canada CIFAR AI Chair Canada Google DeepMind United Kingdom
The extragradient method has gained popularity due to its robust convergence properties for differentiable games. Unlike single-objective optimization, game dynamics involve complex interactions reflected by the eigen... 详细信息
来源: 评论
A contrastive framework for neural text generation  22
A contrastive framework for neural text generation
收藏 引用
Proceedings of the 36th International Conference on Neural Information Processing Systems
作者: Yixuan Su Tian Lan Yan Wang Dani Yogatama Lingpeng Kong Nigel Collier Language Technology Lab University of Cambridge Tencent AI Lab DeepMind Department of Computer Science The University of Hong Kong
Text generation is of great importance to many natural language processing applications. However, maximization-based decoding methods (e.g., beam search) of neural language models often lead to degenerate solutions—t...
来源: 评论
Fine-Grained Distribution-Dependent Learning Curves
arXiv
收藏 引用
arXiv 2022年
作者: Bousquet, Olivier Hanneke, Steve Moran, Shay Shafer, Jonathan Tolstikhin, Ilya Google Brain Team United States Computer Science Department Purdue University United States Department of Mathematics Department of Computer Science Technion - Israel Institute of Technology Google Research United States Computer Science Division UC Berkeley United States
Learning curves plot the expected error of a learning algorithm as a function of the number of labeled samples it receives from a target distribution. They are widely used as a measure of an algorithm's performanc... 详细信息
来源: 评论
Combating Toxicity, Harassment, and Abuse in Online Social Spaces: A Workshop at CHI 2023
Combating Toxicity, Harassment, and Abuse in Online Social S...
收藏 引用
Extended Abstracts of the 2023 CHI Conference on Human Factors in Computing Systems, CHI EA 2023
作者: Mandryk, Regan L. Frommel, Julian Goyal, Nitesh Freeman, Guo Lampe, Cliff Vieweg, Sarah Wohn, Donghee Yvette Department of Computer Science University of Saskatchewan Canada Information and Computing Sciences Utrecht University Netherlands Google United States School of Computing Clemson University United States School of Information University of Michigan United States Cash App United States New Jersey Institute of Technology United States
Online social spaces provide much needed connection and belonging - particularly in a context of continued lack of global mobility due to the ongoing Covid-19 pandemic and climate crisis. However, the norms of online ... 详细信息
来源: 评论
Utilizing Deep Convolutional Neural Network and Local Binary Pattern Fusion for Plant Leaf Disease Identification: An Integrated Approach
Utilizing Deep Convolutional Neural Network and Local Binary...
收藏 引用
Industrial Electronics: Developments & Applications (ICIDeA), IEEE International Conference on-
作者: S. Rahamat Basha Pratibha C. Kaladeep Yalagi Balaram Puli Pandian Sundaramoorthy Rajesh Daruvuri S Vinayagapriya Department of computer science and engineering Malla reddy college of engineering and technology Department of Computer Science and Engineering Walchand Institute of Technology Solapur Pratibhayalagi Engineering and Data Science Everest Computers Inc Application Developer EL CIC-1W-AMI IBM Technical Account Manager Cloud Data and AI Google Dept of ece St.josephs college of engineering
Precise detection of plant diseases is essential in agriculture to maximize crop management and yield. The present study presents an innovative approach that integrates convolutional neural networks (CNNs) with local ... 详细信息
来源: 评论
Utilizing Deep Convolutional Neural Network and Local Binary Pattern Fusion for Plant Leaf Disease Identification: An Integrated Approach  3
Utilizing Deep Convolutional Neural Network and Local Binary...
收藏 引用
3rd IEEE International Conference on Industrial Electronics: Developments and Applications, ICIDeA 2025
作者: Rahamat Basha, S. Kaladeep Yalagi, Pratibha C. Puli, Balaram Sundaramoorthy, Pandian Daruvuri, Rajesh Vinayagapriya, S. Malla reddy college of engineering and technology Department of computer science and engineering India Walchand Institute of Technology Solapur Department of Computer Science and Engineering Solapur India Engineering and Data Science Everest Computers Inc India Application Developer EL CIC-1W-AMI IBM India Google India St.josephs college of engineering Dept of ece India
Precise detection of plant diseases is essential in agriculture to maximize crop management and yield. The present study presents an innovative approach that integrates convolutional neural networks (CNNs) with local ... 详细信息
来源: 评论
DiffuseVAE: Efficient, Controllable and High-Fidelity Generation from Low-Dimensional Latents
arXiv
收藏 引用
arXiv 2022年
作者: Pandey, Kushagra Mukherjee, Avideep Rai, Piyush Kumar, Abhishek Department of Computer Science University of California Irvine United States Department of Computer Science Indian Institute of Technology Kanpur India Google Research Brain Team
Diffusion probabilistic models have been shown to generate state-of-the-art results on several competitive image synthesis benchmarks but lack a low-dimensional, interpretable latent space, and are slow at generation.... 详细信息
来源: 评论
The Clever Hans Effect in Unsupervised Learning
arXiv
收藏 引用
arXiv 2024年
作者: Kauffmann, Jacob Dippel, Jonas Ruff, Lukas Samek, Wojciech Müller, Klaus-Robert Montavon, Grégoire Department of Electrical Engineering and Computer Science Technische Universität Berlin Germany BIFOLD – Berlin Institute for the Foundations of Learning and Data Berlin Germany Aignostics Berlin Germany Department of Mathematics and Computer Science Freie Universität Berlin Germany Department of Artificial Intelligence Fraunhofer HHI Berlin Germany Department of Artificial Intelligence Korea University Seoul Korea Republic of Max-Planck Institute for Informatics Saarbrücken Germany Google Deepmind Berlin Germany
Unsupervised learning has become an essential building block of AI systems. The representations it produces, e.g. in foundation models, are critical to a wide variety of downstream applications. It is therefore import... 详细信息
来源: 评论
Lightweight, Multi-Speaker, Multi-Lingual Indic Text-to-Speech
Lightweight, Multi-Speaker, Multi-Lingual Indic Text-to-Spee...
收藏 引用
International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
作者: Abhayjeet Singh Amala Nagireddi Deekshitha G Jesuraja Bandekar Roopa R Sandhya Badiger Sathvik Udupa Prasanta Kumar Ghosh Hema A Murthy Heiga Zen Pranaw Kumar Kamal Kant Amol Bole Bira Chandra Singh Keiichi Tokuda Mark Hasegawa-Johnson Philipp Olbrich Electrical Engineering Department Indian Institute of Science (IISc) Bangalore India Department of Computer Science & Engineering Indian Institute of Technology Madras India Google Japan CDAC Mumbai India Department of Computer Science Nagoya Institute of Technology Japan Department of Electrical and Computer Engineering University of Illinois Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH Bonn Germany
The Lightweight, Multi-speaker, Multi-lingual Indic Text-to-Speech (LIMMITS’23) challenge is organized as part of the ICASSP 2023 signal processing grand challenge. LIMMITS’23 aims at the development of a lightweigh... 详细信息
来源: 评论
ROBUST KNOWLEDGE DISTILLATION FROM RNN-T MODELS WITH NOISY TRAINING LABELS USING FULL-SUM LOSS
arXiv
收藏 引用
arXiv 2023年
作者: Zeineldeen, Mohammad Audhkhasi, Kartik Baskar, Murali Karthick Ramabhadran, Bhuvana Human Language Technology and Pattern Recognition Computer Science Department Rwth Aachen University Aachen52074 Germany Google Llc New York United States
This work studies knowledge distillation (KD) and addresses its constraints for recurrent neural network transducer (RNNT) models. In hard distillation, a teacher model transcribes large amounts of unlabelled speech t... 详细信息
来源: 评论