咨询与建议

限定检索结果

文献类型

  • 295 篇 期刊文献
  • 158 篇 会议
  • 6 册 图书

馆藏范围

  • 459 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 344 篇 工学
    • 272 篇 计算机科学与技术...
    • 190 篇 软件工程
    • 45 篇 控制科学与工程
    • 44 篇 信息与通信工程
    • 35 篇 光学工程
    • 30 篇 生物工程
    • 21 篇 生物医学工程(可授...
    • 18 篇 电气工程
    • 18 篇 电子科学与技术(可...
    • 15 篇 机械工程
    • 11 篇 化学工程与技术
    • 9 篇 材料科学与工程(可...
    • 8 篇 土木工程
    • 7 篇 力学(可授工学、理...
    • 6 篇 仪器科学与技术
    • 6 篇 建筑学
    • 6 篇 安全科学与工程
  • 180 篇 理学
    • 100 篇 数学
    • 60 篇 物理学
    • 44 篇 统计学(可授理学、...
    • 34 篇 生物学
    • 20 篇 系统科学
    • 17 篇 化学
    • 7 篇 地球物理学
  • 45 篇 管理学
    • 28 篇 管理科学与工程(可...
    • 22 篇 图书情报与档案管...
    • 17 篇 工商管理
  • 16 篇 法学
    • 16 篇 社会学
  • 7 篇 经济学
    • 7 篇 应用经济学
  • 6 篇 农学
  • 6 篇 医学
  • 3 篇 教育学
  • 2 篇 文学
  • 1 篇 哲学

主题

  • 15 篇 reinforcement le...
  • 10 篇 semantics
  • 9 篇 deep learning
  • 8 篇 approximation al...
  • 7 篇 decoding
  • 7 篇 machine learning
  • 7 篇 stochastic syste...
  • 6 篇 computer science
  • 6 篇 bayesian inferen...
  • 5 篇 adversarial mach...
  • 5 篇 speech recogniti...
  • 5 篇 complexity theor...
  • 5 篇 artificial intel...
  • 5 篇 accuracy
  • 4 篇 quantum control
  • 4 篇 deep neural netw...
  • 4 篇 quantum algorith...
  • 4 篇 neural networks
  • 4 篇 optimization
  • 4 篇 computational li...

机构

  • 71 篇 google deepmind ...
  • 48 篇 google
  • 28 篇 google deepmind
  • 26 篇 google research ...
  • 25 篇 mpi for intellig...
  • 21 篇 google research
  • 16 篇 google united st...
  • 13 篇 google inc.
  • 13 篇 deepmind united ...
  • 10 篇 department of co...
  • 10 篇 google inc. unit...
  • 9 篇 department of co...
  • 9 篇 google research ...
  • 8 篇 department of el...
  • 8 篇 department of co...
  • 8 篇 department of co...
  • 7 篇 department of co...
  • 7 篇 deepmind
  • 7 篇 heidelberg
  • 6 篇 department of el...

作者

  • 36 篇 bernhard schölko...
  • 35 篇 kevin murphy
  • 8 篇 müller klaus-rob...
  • 7 篇 farhi edward
  • 6 篇 jiang zhang
  • 6 篇 bakas spyridon
  • 6 篇 leibo joel z.
  • 6 篇 søgaard anders
  • 6 篇 menze bjoern
  • 6 篇 montavon grégoir...
  • 5 篇 summers ronald m...
  • 5 篇 baumgartner mich...
  • 5 篇 veličković petar
  • 5 篇 antonelli michel...
  • 5 篇 kopp-schneider a...
  • 5 篇 sadigh dorsa
  • 5 篇 isensee fabian
  • 5 篇 xia fei
  • 5 篇 demaine erik d.
  • 4 篇 kreshuk anna

语言

  • 395 篇 英文
  • 63 篇 其他
  • 1 篇 中文
检索条件"机构=Google DeepMind and Department of Computer Science and Technology"
459 条 记 录,以下是11-20 订阅
排序:
BAGEL: bootstrapping agents by guiding exploration with language  24
BAGEL: bootstrapping agents by guiding exploration with lang...
收藏 引用
Proceedings of the 41st International Conference on Machine Learning
作者: Shikhar Murty Christopher D. Manning Peter Shaw Mandar Joshi Kenton Lee Google Deepmind and Department of Computer Science Stanford University Department of Computer Science Stanford University Google Deepmind
Following natural language instructions by executing actions in digital environments (e.g. web-browsers and REST APIs) is a challenging task for language model (LM) agents. Unfortunately, LM agents often fail to gener...
来源: 评论
Interpretability illusions in the generalization of simplified models  24
Interpretability illusions in the generalization of simplifi...
收藏 引用
Proceedings of the 41st International Conference on Machine Learning
作者: Dan Friedman Andrew Lampinen Lucas Dixon Danqi Chen Asma Ghandeharioun Department of Computer Science Princeton University Google DeepMind Google Research Department of Computer Science Princeton University and Google DeepMind
A common method to study deep learning systems is to use simplified model representations--for example, using singular value decomposition to visualize the model's hidden states in a lower dimensional space. This ...
来源: 评论
Enhancing Reinforcement Learning with Dense Rewards from Language Model Critic
Enhancing Reinforcement Learning with Dense Rewards from Lan...
收藏 引用
2024 Conference on Empirical Methods in Natural Language Processing, EMNLP 2024
作者: Cao, Meng Shu, Lei Yu, Lei Zhu, Yun Wichers, Nevan Liu, Yinxiao Meng, Lei School of Computer Science McGill University Canada Department of Computer Science University of Toronto Canada Mila - Québec AI Institute Canada Google Deepmind United Kingdom
Reinforcement learning (RL) can align language models with non-differentiable reward signals, such as human preferences. However, a major challenge arises from the sparsity of these reward signals - typically, there i... 详细信息
来源: 评论
The poisson midpoint method for langevin dynamics: provably efficient discretization for diffusion models  24
The poisson midpoint method for langevin dynamics: provably ...
收藏 引用
Proceedings of the 38th International Conference on Neural Information Processing Systems
作者: Saravanan Kandasamy Dheeraj Nagaraj Department of Computer Science Cornell University Google DeepMind
Langevin Dynamics is a Stochastic Differential Equation (SDE) central to sampling and generative modeling and is implemented via time discretization. Langevin Monte Carlo (LMC), based on the Euler-Maruyama discretizat...
来源: 评论
REDUCR: Robust Data Downsampling using Class Priority Reweighting  38
REDUCR: Robust Data Downsampling using Class Priority Reweig...
收藏 引用
38th Conference on Neural Information Processing Systems, NeurIPS 2024
作者: Bankes, William Hughes, George Bogunovic, Ilija Wang, Zi Department of Computer Science University College London United Kingdom Department of Electrical Engineering University College London United Kingdom Google DeepMind United Kingdom
Modern machine learning models are becoming increasingly expensive to train for real-world image and text classification tasks, where massive web-scale data is collected in a streaming fashion. To reduce the training ...
来源: 评论
How do Large Language Models Navigate Conflicts between Honesty and Helpfulness?  41
How do Large Language Models Navigate Conflicts between Hone...
收藏 引用
41st International Conference on Machine Learning, ICML 2024
作者: Liu, Ryan Sumers, Theodore R. Dasgupta, Ishita Griffiths, Thomas L. Department of Computer Science Princeton University United States Anthropic United States Google DeepMind United Kingdom Department of Psychology Princeton University United States
In day-to-day communication, people often approximate the truth - for example, rounding the time or omitting details - in order to be maximally helpful to the listener. How do large language models (LLMs) handle such ... 详细信息
来源: 评论
Online Bidding under RoS Constraints without Knowing the Value  25
Online Bidding under RoS Constraints without Knowing the Val...
收藏 引用
34th ACM Web Conference, WWW 2025
作者: Vijayan, Sushant Feng, Zhe Padmanabhan, Swati Shanmugam, Karthikeyan Suggala, Arun Wang, Di School of Technology and Computer Science Tata Institute of Fundamental Research Mumbai India Google Research Mountain View United States Massachusetts Institute of Technology Cambridge United States Google DeepMind Bengaluru India
We consider the problem of bidding in online advertising, where an advertiser aims to maximize value while adhering to budget and Return-on-Spend (RoS) constraints. Unlike prior work that assumes knowledge of the valu... 详细信息
来源: 评论
Chain of Code: Reasoning with a Language Model-Augmented Code Emulator  41
Chain of Code: Reasoning with a Language Model-Augmented Cod...
收藏 引用
41st International Conference on Machine Learning, ICML 2024
作者: Li, Chengshu Liang, Jacky Zeng, Andy Chen, Xinyun Hausman, Karol Sadigh, Dorsa Levine, Sergey Fei-Fei, Li Xia, Fei Ichter, Brian Department of Computer Science Stanford University CA United States Google DeepMind CA United States Department of Electrical Engineering and Computer Sciences University of California BerkeleyCA United States
Code provides a general syntactic structure to build complex programs and perform precise computations when paired with a code interpreter - we hypothesize that language models (LMs) can leverage code-writing to impro... 详细信息
来源: 评论
A Computationally Efficient Sparsified Online Newton Method  37
A Computationally Efficient Sparsified Online Newton Method
收藏 引用
37th Conference on Neural Information Processing Systems, NeurIPS 2023
作者: Devvrit Duvvuri, Sai Surya Anil, Rohan Gupta, Vineet Hsieh, Cho-Jui Dhillon, Inderjit Department of Computer Science The University of Texas Austin United States Google DeepMind United Kingdom CS Department UCLA United States
Second-order methods hold significant promise for enhancing the convergence of deep neural network training;however, their large memory and computational demands have limited their practicality. Thus there is a need f... 详细信息
来源: 评论
FRAPPÉ: a group fairness framework for post-processing everything  24
FRAPPÉ: a group fairness framework for post-processing ever...
收藏 引用
Proceedings of the 41st International Conference on Machine Learning
作者: Alexandru Ţifrea Preethi Lahoti Ben Packer Yoni Halpern Ahmad Beirami Flavien Prost Department of Computer Science ETH Zurich Google DeepMind
Despite achieving promising fairness-error trade-offs, in-processing mitigation techniques for group fairness cannot be employed in numerous practical applications with limited computation resources or no access to th...
来源: 评论