咨询与建议

限定检索结果

文献类型

  • 295 篇 期刊文献
  • 158 篇 会议
  • 6 册 图书

馆藏范围

  • 459 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 344 篇 工学
    • 272 篇 计算机科学与技术...
    • 190 篇 软件工程
    • 45 篇 控制科学与工程
    • 44 篇 信息与通信工程
    • 35 篇 光学工程
    • 30 篇 生物工程
    • 21 篇 生物医学工程(可授...
    • 18 篇 电气工程
    • 18 篇 电子科学与技术(可...
    • 15 篇 机械工程
    • 11 篇 化学工程与技术
    • 9 篇 材料科学与工程(可...
    • 8 篇 土木工程
    • 7 篇 力学(可授工学、理...
    • 6 篇 仪器科学与技术
    • 6 篇 建筑学
    • 6 篇 安全科学与工程
  • 180 篇 理学
    • 100 篇 数学
    • 60 篇 物理学
    • 44 篇 统计学(可授理学、...
    • 34 篇 生物学
    • 20 篇 系统科学
    • 17 篇 化学
    • 7 篇 地球物理学
  • 45 篇 管理学
    • 28 篇 管理科学与工程(可...
    • 22 篇 图书情报与档案管...
    • 17 篇 工商管理
  • 16 篇 法学
    • 16 篇 社会学
  • 7 篇 经济学
    • 7 篇 应用经济学
  • 6 篇 农学
  • 6 篇 医学
  • 3 篇 教育学
  • 2 篇 文学
  • 1 篇 哲学

主题

  • 15 篇 reinforcement le...
  • 10 篇 semantics
  • 9 篇 deep learning
  • 8 篇 approximation al...
  • 7 篇 decoding
  • 7 篇 machine learning
  • 7 篇 stochastic syste...
  • 6 篇 computer science
  • 6 篇 bayesian inferen...
  • 5 篇 adversarial mach...
  • 5 篇 speech recogniti...
  • 5 篇 complexity theor...
  • 5 篇 artificial intel...
  • 5 篇 accuracy
  • 4 篇 quantum control
  • 4 篇 deep neural netw...
  • 4 篇 quantum algorith...
  • 4 篇 neural networks
  • 4 篇 optimization
  • 4 篇 computational li...

机构

  • 71 篇 google deepmind ...
  • 48 篇 google
  • 28 篇 google deepmind
  • 26 篇 google research ...
  • 25 篇 mpi for intellig...
  • 21 篇 google research
  • 16 篇 google united st...
  • 13 篇 google inc.
  • 13 篇 deepmind united ...
  • 10 篇 department of co...
  • 10 篇 google inc. unit...
  • 9 篇 department of co...
  • 9 篇 google research ...
  • 8 篇 department of el...
  • 8 篇 department of co...
  • 8 篇 department of co...
  • 7 篇 department of co...
  • 7 篇 deepmind
  • 7 篇 heidelberg
  • 6 篇 department of el...

作者

  • 36 篇 bernhard schölko...
  • 35 篇 kevin murphy
  • 8 篇 müller klaus-rob...
  • 7 篇 farhi edward
  • 6 篇 jiang zhang
  • 6 篇 bakas spyridon
  • 6 篇 leibo joel z.
  • 6 篇 søgaard anders
  • 6 篇 menze bjoern
  • 6 篇 montavon grégoir...
  • 5 篇 summers ronald m...
  • 5 篇 baumgartner mich...
  • 5 篇 veličković petar
  • 5 篇 antonelli michel...
  • 5 篇 kopp-schneider a...
  • 5 篇 sadigh dorsa
  • 5 篇 isensee fabian
  • 5 篇 xia fei
  • 5 篇 demaine erik d.
  • 4 篇 kreshuk anna

语言

  • 395 篇 英文
  • 63 篇 其他
  • 1 篇 中文
检索条件"机构=Google DeepMind and Department of Computer Science and Technology"
459 条 记 录,以下是211-220 订阅
排序:
Scientific discovery in the age of artificial intelligence
收藏 引用
NATURE 2023年 第7978期621卷 E33-E33页
作者: Wang, Hanchen Fu, Tianfan Du, Yuanqi Gao, Wenhao Huang, Kexin Liu, Ziming Chandak, Payal Liu, Shengchao Van Katwyk, Peter Deac, Andreea Anandkumar, Anima Bergen, Karianne Gomes, Carla P. Ho, Shirley Kohli, Pushmeet Lasenby, Joan Leskovec, Jure Liu, Tie-Yan Manrai, Arjun Marks, Debora Ramsundar, Bharath Song, Le Sun, Jimeng Tang, Jian Velickovic, Petar Welling, Max Zhang, Linfeng Coley, Connor W. Bengio, Yoshua Zitnik, Marinka Department of Engineering University of Cambridge Cambridge UK Department of Computing and Mathematical Sciences California Institute of Technology Pasadena CA USA NVIDIA Santa Clara CA USA Department of Computational Science and Engineering Georgia Institute of Technology Atlanta GA USA Department of Computer Science Cornell University Ithaca NY USA Department of Chemical Engineering Massachusetts Institute of Technology Cambridge MA USA Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology Cambridge MA USA Department of Computer Science Stanford University Stanford CA USA Department of Physics Massachusetts Institute of Technology Cambridge MA USA Harvard-MIT Program in Health Sciences and Technology Cambridge MA USA Mila – Quebec AI Institute Montreal Quebec Canada Université de Montréal Montreal Quebec Canada HEC Montréal Montreal Quebec Canada CIFAR AI Chair Toronto Ontario Canada Department of Earth Environmental and Planetary Sciences Brown University Providence RI USA Data Science Institute Brown University Providence RI USA Center for Computational Astrophysics Flatiron Institute New York NY USA Department of Astrophysical Sciences Princeton University Princeton NJ USA Department of Physics Carnegie Mellon University Pittsburgh PA USA Department of Physics and Center for Data Science New York University New York NY USA Google DeepMind London UK Department of Computer Science and Technology University of Cambridge Cambridge UK Microsoft Research Beijing China Department of Biomedical Informatics Harvard Medical School Boston MA USA Broad Institute of MIT and Harvard Cambridge MA USA Harvard Data Science Initiative Cambridge MA USA Kempner Institute for the Study of Natural and Artificial Intelligence Harvard University Cambridge MA USA Department of Systems Biology Harvard Medical School Boston MA USA Deep Forest Sciences Palo Alto CA USA BioMap Beijing China Mo
来源: 评论
Randomized entity-wise factorization for multi-agent reinforcement learning
arXiv
收藏 引用
arXiv 2020年
作者: Iqbal, Shariq Schroeder de Witt, Christian A. Peng, Bei Böhmer, Wendelin Whiteson, Shimon Sha, Fei Department of Computer Science University of Southern California Department of Computer Science University of Oxford Department of Software Technology Delft University of Technology Google Research
Multi-agent settings in the real world often involve tasks with varying types and quantities of agents and non-agent entities;however, common patterns of behavior often emerge among these agents/entities. Our method a... 详细信息
来源: 评论
Optimal Scaling Quantum Linear-Systems Solver via Discrete Adiabatic Theorem
收藏 引用
PRX Quantum 2022年 第4期3卷 040303-040303页
作者: Pedro C.S. Costa Dong An Yuval R. Sanders Yuan Su Ryan Babbush Dominic W. Berry Department of Physics and Astronomy Macquarie University Sydney New South Wales 2109 Australia Joint Center for Quantum Information and Computer Science University of Maryland College Park Maryland 20742 USA Google Quantum AI Venice California 90291 USA Centre for Quantum Software and Information University of Technology Sydney Sydney New South Wales 2007 Australia
Recently, several approaches to solving linear systems on a quantum computer have been formulated in terms of the quantum adiabatic theorem for a continuously varying Hamiltonian. Such approaches have enabled near-lin... 详细信息
来源: 评论
Pandemics in silico: Scaling Agent-based Simulations on Realistic Social Contact Networks
arXiv
收藏 引用
arXiv 2024年
作者: Kitson, Joy Costello, Ian Chen, Jiangzhuo Jiménez, Diego Hoops, Stefan Mortveit, Henning Meneses, Esteban Yeom, Jae-Seung Marathe, Madhav V. Bhatele, Abhinav Department of Computer Science University of Maryland College Park United States Google Inc. Mountain View United States Biocomplexity Institute and Initiative University of Virginia Charlottesville United States Max Planck Computing and Data Facility Garching Germany National Advanced Computing Collaboratory National High Technology Center San José Costa Rica Center for Applied Scientific Computing Lawrence Livermore National Laboratory Livermore United States
Preventing the spread of infectious diseases requires implementing interventions at various levels of government and evaluating the potential impact and efficacy of those preemptive measures. Agent-based modeling can ... 详细信息
来源: 评论
Silly rules improve the capacity of agents to learn stable enforcement and compliance behaviors  19
Silly rules improve the capacity of agents to learn stable e...
收藏 引用
19th International Conference on Autonomous Agents and Multiagent Systems, AAMAS 2020
作者: Köster, Raphael Hadfield-Menell, Dylan Hadfield, Gillian K. Leibo, Joel Z. DeepMind United Kingdom Department of Electrical Engineering and Computer Science University of California Berkeley Center for Human-Compatible AI United States Schwartz Reisman Institute for Technology and Society University of Toronto Vector Institute Center for Human-Compatible AI OpenAI Canada
How can societies learn to enforce and comply with social norms? Many if not most human norms are functional. Rules that punish non-cooperative behavior, for example, support cooperation. An intriguing feature of huma... 详细信息
来源: 评论
Quartic Quantum Speedups for Planted Inference
收藏 引用
Physical Review X 2025年 第2期15卷 021077-021077页
作者: Alexander Schmidhuber Ryan O’Donnell Robin Kothari Ryan Babbush Google Quantum AI Venice California USA Center for Theoretical Physics Massachusetts Institute of Technology Cambridge Massachusetts USA Computer Science Department Carnegie Mellon University Pittsburgh Pennsylvania USA
We describe a quantum algorithm for the Planted Noisy kXOR Problem (also known as Sparse Learning Parity with Noise) that achieves a nearly quartic (fourth-power) speedup over the best known classical algorithm while ...
来源: 评论
Learning Noise via Dynamical Decoupling of Entangled Qubits
arXiv
收藏 引用
arXiv 2022年
作者: McCourt, Trevor Neill, Charles Lee, Kenny Quintana, Chris Chen, Yu Kelly, Julian Smelyanskiy, V.N. Dykman, M.I. Korotkov, Alexander Chuang, Isaac L. Petukhov, A.G. Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology CambridgeMA02139 United States Department of Physics Co-Design Center for Quantum Advantage Massachusetts Institute of Technology CambridgeMA02139 United States Google Quantum AI Santa BarbaraCA United States Department of Physics and Astronomy Michigan State University East LansingMI48824 United States Department of Physics Massachusetts Institute of Technology CambridgeMA02139 United States
Noise in entangled quantum systems is difficult to characterize due to many-body effects involving multiple degrees of freedom. This noise poses a challenge to quantum computing, where two-qubit gate performance is cr... 详细信息
来源: 评论
Meta-control of social learning strategies
arXiv
收藏 引用
arXiv 2021年
作者: Yaman, Anil Bredeche, Nicolas Çaylak, Onur Leibo, Joel Z. Lee, Sang Wan Computer Science Department Vrije Universiteit Amsterdam Amsterdam Netherlands Institut des Systèmes Intelligents et de Robotique Sorbonne Université CNRS Paris France Department of Mathematics and Computer Science Eindhoven University of Technology Eindhoven Netherlands DeepMind London United Kingdom Department of Bio and Brain Engineering Korea Advanced Institute of Science and Technology Daejeon Korea Republic of Center for Neuroscience-Inspired AI Korea Advanced Institute of Science and Technology Daejeon Korea Republic of Program of Brain and Cognitive Engineering Korea Advanced Institute of Science and Technology Daejeon Korea Republic of KI for Health Science and Technology Korea Advanced Institute of Science and Technology Daejeon Korea Republic of KI for Artificial Intelligence Korea Advanced Institute of Science and Technology Daejeon Korea Republic of Computer Science Department Vrije Universiteit Amsterdam Amsterdam Netherlands
Social learning, copying other's behavior without actual experience, offers a cost-effective means of knowledge acquisition. However, it raises the fundamental question of which individuals have reliable informati... 详细信息
来源: 评论
NaijaSenti: A Nigerian Twitter Sentiment Corpus for Multilingual Sentiment Analysis
arXiv
收藏 引用
arXiv 2022年
作者: Muhammad, Shamsuddeen Hassan Adelani, David Ifeoluwa Ruder, Sebastian Ahmad, Ibrahim Said Abdulmumin, Idris Bello, Bello Shehu Choudhury, Monojit Emezue, Chris Chinenye Abdullahi, Saheed Salahudeen Aremu, Anuoluwapo Jorge, Alípio Brazdil, Pavel LIAAD - INESC TEC Portugal Faculty of Sciences University of Porto Portugal Saarland University Germany Google Research Bayero University Kano Nigeria Faculty of Computer Science and Information Technology Bayero University Kano Nigeria Department of Computer Science Ahmadu Bello University Zaria Nigeria Microsoft Research India Germany Technical University of Munich Germany Kaduna state University Nigeria Masakhane NLP HausaNLP
Sentiment analysis is one of the most widely studied applications in NLP, but most work focuses on languages with large amounts of data. We introduce the first large-scale human-annotated Twitter sentiment dataset for... 详细信息
来源: 评论
Large Language Models for Traffic and Transportation Research: Methodologies, State of the Art, and Future Opportunities
arXiv
收藏 引用
arXiv 2025年
作者: Yan, Yimo Liao, Yejia Xu, Guanhao Yao, Ruili Fan, Huiying Sun, Jingran Wang, Xia Sprinkle, Jonathan An, Ziyan Ma, Meiyi Cheng, Xi Liu, Tong Ke, Zemian Zou, Bo Barth, Matthew Kuo, Yong-Hong Department of Data and Systems Engineering The University of Hong Kong Hong Kong Department of Civil Materials and Environmental Engineering University of Illinois ChicagoIL United States Department of Electrical Engineering University of California RiversideCA United States Buildings and Transportation Science Division Oak Ridge National Laboratory TN United States University of California RiversideCA United States School of Civil and Environmental Engineering Georgia Institute of Technology GA United States University of Texas AustinTX United States Department of Computer Science Vanderbilt University TN United States Cornell University NY United States Department of Civil and Environmental Engineering University of Illinois Urbana-Champaign IL United States Google Inc. CA United States
The rapid rise of Large Language Models (LLMs) is transforming traffic and transportation research, with significant advancements emerging between the years 2023 and 2025 – a period marked by the inception and swift ...
来源: 评论