咨询与建议

限定检索结果

文献类型

  • 295 篇 期刊文献
  • 158 篇 会议
  • 6 册 图书

馆藏范围

  • 459 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 343 篇 工学
    • 269 篇 计算机科学与技术...
    • 187 篇 软件工程
    • 44 篇 信息与通信工程
    • 42 篇 控制科学与工程
    • 35 篇 光学工程
    • 30 篇 生物工程
    • 22 篇 生物医学工程(可授...
    • 18 篇 电气工程
    • 18 篇 电子科学与技术(可...
    • 15 篇 机械工程
    • 11 篇 化学工程与技术
    • 9 篇 材料科学与工程(可...
    • 8 篇 土木工程
    • 7 篇 力学(可授工学、理...
    • 6 篇 仪器科学与技术
  • 180 篇 理学
    • 100 篇 数学
    • 60 篇 物理学
    • 44 篇 统计学(可授理学、...
    • 34 篇 生物学
    • 20 篇 系统科学
    • 17 篇 化学
    • 7 篇 地球物理学
  • 46 篇 管理学
    • 29 篇 管理科学与工程(可...
    • 22 篇 图书情报与档案管...
    • 18 篇 工商管理
  • 18 篇 法学
    • 18 篇 社会学
  • 7 篇 经济学
    • 7 篇 应用经济学
  • 7 篇 医学
    • 7 篇 基础医学(可授医学...
    • 7 篇 临床医学
  • 6 篇 农学
  • 4 篇 教育学
  • 2 篇 文学
  • 1 篇 哲学

主题

  • 15 篇 reinforcement le...
  • 10 篇 semantics
  • 9 篇 deep learning
  • 8 篇 approximation al...
  • 7 篇 decoding
  • 7 篇 machine learning
  • 7 篇 stochastic syste...
  • 6 篇 computer science
  • 6 篇 bayesian inferen...
  • 5 篇 adversarial mach...
  • 5 篇 speech recogniti...
  • 5 篇 complexity theor...
  • 5 篇 artificial intel...
  • 5 篇 accuracy
  • 4 篇 quantum control
  • 4 篇 deep neural netw...
  • 4 篇 quantum algorith...
  • 4 篇 neural networks
  • 4 篇 optimization
  • 4 篇 computational li...

机构

  • 71 篇 google deepmind ...
  • 48 篇 google
  • 28 篇 google deepmind
  • 26 篇 google research ...
  • 25 篇 mpi for intellig...
  • 21 篇 google research
  • 16 篇 google united st...
  • 13 篇 google inc.
  • 13 篇 deepmind united ...
  • 10 篇 department of co...
  • 10 篇 google inc. unit...
  • 10 篇 google research ...
  • 9 篇 department of co...
  • 8 篇 department of el...
  • 8 篇 department of co...
  • 8 篇 department of co...
  • 7 篇 department of co...
  • 7 篇 deepmind
  • 7 篇 department of el...
  • 7 篇 heidelberg

作者

  • 36 篇 bernhard schölko...
  • 35 篇 kevin murphy
  • 8 篇 müller klaus-rob...
  • 7 篇 farhi edward
  • 6 篇 jiang zhang
  • 6 篇 bakas spyridon
  • 6 篇 leibo joel z.
  • 6 篇 søgaard anders
  • 6 篇 menze bjoern
  • 6 篇 montavon grégoir...
  • 5 篇 summers ronald m...
  • 5 篇 baumgartner mich...
  • 5 篇 veličković petar
  • 5 篇 antonelli michel...
  • 5 篇 kopp-schneider a...
  • 5 篇 sadigh dorsa
  • 5 篇 isensee fabian
  • 5 篇 xia fei
  • 5 篇 demaine erik d.
  • 4 篇 kreshuk anna

语言

  • 395 篇 英文
  • 63 篇 其他
  • 1 篇 中文
检索条件"机构=Google DeepMind and Department of Computer Science and Technology"
459 条 记 录,以下是251-260 订阅
排序:
Efficient quantum algorithm for nonlinear reaction-diffusion equations and energy estimation
arXiv
收藏 引用
arXiv 2022年
作者: Liu, Jin-Peng An, Dong Fang, Di Wang, Jiasu Low, Guang Hao Jordan, Stephen Joint Center for Quantum Information and Computer Science University of Maryland MD United States Simons Institute for the Theory of Computing BerkeleyCA United States Department of Mathematics University of California BerkeleyCA United States Center for Theoretical Physics Massachusetts Institute of Technology CambridgeMA United States Department of Mathematics and Duke Quantum Center Duke University DurhamNC United States Microsoft Quantum RedmondWA United States Google Quantum AI Santa BarbaraCA United States
Nonlinear differential equations exhibit rich phenomena in many fields but are notoriously challenging to solve. Recently, Liu et al. [1] demonstrated the first efficient quantum algorithm for dissipative quadratic di... 详细信息
来源: 评论
HIGHRES: Highlight-based reference-less evaluation of summarization
arXiv
收藏 引用
arXiv 2019年
作者: Hardy Narayan, Shashi Vlachos, Andreas Department of Computer Science University of Sheffield Google Research Department of Computer Science and Technology University of Cambridge
There has been substantial progress in summarization research enabled by the availability of novel, often large-scale, datasets and recent advances on neural network-based approaches. However, manual evaluation of the... 详细信息
来源: 评论
Kronecker-factored curvature approximations for recurrent neural networks  6
Kronecker-factored curvature approximations for recurrent ne...
收藏 引用
6th International Conference on Learning Representations, ICLR 2018
作者: Martens, James Ba, Jimmy Johnson, Matthew DeepMind United Kingdom Department of Computer Science University of Toronto Toronto Canada Google Brain United States
Kronecker-factor Approximate Curvature (Martens & Grosse, 2015) (K-FAC) is a 2nd-order optimization method which has been shown to give state-of-the-art performance on large-scale neural network optimization tasks... 详细信息
来源: 评论
Silly rules improve the capacity of agents to learn stable enforcement and compliance behaviors
arXiv
收藏 引用
arXiv 2020年
作者: Köster, Raphael Hadfield-Menell, Dylan Hadfield, Gillian K. Leibo, Joel Z. DeepMind Department of Electrical Engineering and Computer Science University of California Berkeley Center for Human-Compatible AI Schwartz Reisman Institute for Technology and Society University of Toronto Vector Institute Center for Human-Compatible AI OpenAI
How can societies learn to enforce and comply with social norms? Here we investigate the learning dynamics and emergence of compliance and enforcement of social norms in a foraging game, implemented in a multi-agent r... 详细信息
来源: 评论
Transoceanic phase and polarization fiber sensing using real-time coherent transceiver
arXiv
收藏 引用
arXiv 2021年
作者: Mazur, Mikael Castellanos, Jorge C. Ryf, Roland Börjeson, Erik Chodkiewicz, Tracy Kamalov, Valey Yin, Shuang Fontaine, Nicolas K. Chen, Haoshuo Dallachiesa, Lauren Corteselli, Steve Copping, Philip Gripp, Jürgen Mortelette, Aurelien Kowalski, Benoit Dellinger, Rodney Neilson, David T. Larsson-Edefors, Per Nokia Bell Labs 600 Mountain Ave. Murray HillNJ07974 United States Google LLC Mountain ViewCA94043 United States Department of Computer Science and Engineering Chalmers University of Technology Sweden Nokia 600 Mountain Ave. Murray HillNJ07974 United States
We implement a real-time coherent transceiver with fast streaming outputs for environmental sensing. Continuous sensing using phase and equalizer outputs over 12800km of a submarine cable is demonstrated to enable tim... 详细信息
来源: 评论
Low-field magnetic resonance image enhancement via stochastic image quality transfer
arXiv
收藏 引用
arXiv 2023年
作者: Lin, Hongxiang Figini, Matteo D'Arco, Felice Ogbole, Godwin Tanno, Ryutaro Blumberg, Stefano B. Ronan, Lisa Brown, Biobele J. Carmichael, David W. Lagunju, Ikeoluwa Cross, Judith Helen Fernandez-Reyes, Delmiro Alexander, Daniel C. Research Center for Healthcare Data Science Zhejiang Lab Zhejiang Hangzhou311121 China Centre for Medical Image Computing University College London LondonWC1E 6BT United Kingdom Department of Computer Science University College London LondonWC1E 6BT United Kingdom Department of Radiology Great Ormond Street Hospital for Children LondonWC1N 3JH United Kingdom Department of Radiology College of Medicine University of Ibadan Ibadan200284 Nigeria Google DeepMind LondonN1C 4AG United Kingdom Centre for Artificial Intelligence University College London LondonWC1E 6BT United Kingdom Department of Paediatrics College of Medicine University of Ibadan Ibadan200284 Nigeria School of Biomedical Engineering & Imaging Sciences King’s College London LondonNW3 3ES United Kingdom UCL Great Ormond Street Institute of Child Health LondonWC1N 3JH United Kingdom
Low-field ( © 2023, CC BY-NC-ND.
来源: 评论
Exact and approximate hierarchical clustering using A
arXiv
收藏 引用
arXiv 2021年
作者: Greenberg, Craig S. Macaluso, Sebastian Monath, Nicholas Dubey, Avinava Flaherty, Patrick Zaheer, Manzil Ahmed, Amr Cranmer, Kyle McCallum, Andrew National Institute of Standards and Technology United States Center for Cosmology and Particle Physics Center for Data Science New York University United States College of Information and Computer Sciences University of Massachusetts Amherst United States Google Research Mountain ViewCA United States Department of Mathematics and Statistics University of Massachusetts Amherst United States
Hierarchical clustering is a critical task in numerous domains. Many approaches are based on heuristics and the properties of the resulting clusterings are studied post hoc. However, in several applications, there is ... 详细信息
来源: 评论
Optimal scaling quantum linear systems solver via discrete adiabatic theorem
arXiv
收藏 引用
arXiv 2021年
作者: Costa, Pedro C.S. An, Dong Sanders, Yuval R. Su, Yuan Babbush, Ryan Berry, Dominic W. Department of Physics and Astronomy Macquarie University SydneyNSW2109 Australia Joint Center for Quantum Information and Computer Science University of Maryland College ParkMD20742 United States Google Quantum Ai VeniceCA90291 United States Centre for Quantum Software and Information University of Technology Sydney SydneyNSW2007 Australia
Recently, several approaches to solving linear systems on a quantum computer have been formulated in terms of the quantum adiabatic theorem for a continuously varying Hamiltonian. Such approaches enabled near-linear s... 详细信息
来源: 评论
Gender equity in technologies: Considerations for design in the global south
收藏 引用
Interactions 2018年 第1期25卷 58-61页
作者: Sambasivan, Nithya Checkley, Garen Ahmed, Nova Batool, Amna Google United States Department of Electrical and Computer Engineering North South University Bangladesh Information Technology University Department of Computer Science Pakistan Pakistan
This is a forum for perspectives on designing for communities marginalized by economics, social status, infrastructure, or policies. It will discuss design methods, theoretical and conceptual contributions, and method...
来源: 评论
Training of Physical Neural Networks
arXiv
收藏 引用
arXiv 2024年
作者: Momeni, Ali Rahmani, Babak Scellier, Benjamin Wright, Logan G. McMahon, Peter L. Wanjura, Clara C. Li, Yuhang Skalli, Anas Berloff, Natalia G. Onodera, Tatsuhiro Oguz, Ilker Morichetti, Francesco del Hougne, Philipp Le Gallo, Manuel Sebastian, Abu Mirhoseini, Azalia Zhang, Cheng Marković, Danijela Brunner, Daniel Moser, Christophe Gigan, Sylvain Marquardt, Florian Ozcan, Aydogan Grollier, Julie Liu, Andrea J. Psaltis, Demetri Alù, Andrea Fleury, Romain Lausanne Switzerland Microsoft Research 198 Cambridge Science Park CambridgeCB4 0AB United Kingdom Rain AI San Francisco United States Department of Applied Physics Yale University CT United States School of Applied and Engineering Physics Cornell University IthacaNY14853 United States Max Planck Institute for the Science of Light Staudtstraße 2 Erlangen91058 Germany Department of Electrical and Computer Engineering University of California Los AngelesCA90095 United States FEMTO-ST Institute Optics Department CNRS University Bourgogne Franche-Comté Besançon25030 Cedex France Department of Applied Mathematics and Theoretical Physics University of Cambridge Cambridge United Kingdom NTT Physics and Informatics Laboratories NTT Research Inc. Sunnyvale United States Lausanne Switzerland Dipartimento di Elettronica Informazione e Bioingegneria Politecnico di Milano Milan Italy Univ Rennes CNRS IETR UMR 6164 RennesF-35000 France IBM Research Europe– Zurich Rüschlikon8803 Switzerland Department of Computer Science Stanford University United States Google DeepMind 1600 Amphitheatre Parkway Mountain ViewCA94043 United States Unité Mixte de Physique CNRS/Thales CNRS Thales Université Paris-Saclay Palaiseau France Laboratoire Kastler Brossel Sorbonne Université École Normale Supérieure Collège de France CNRS UMR 8552 Paris France Laboratoire Albert Fert CNRS Thales UniversitéParis-Saclay Palaiseau91767 France Department of Physics and Astronomy University of Pennsylvania PhiladelphiaPA19104 United States Lausanne Switzerland Photonics Initiative Advanced Science Research Center City University of New York New YorkNY10031 United States Physics Program Graduate Center City University of New York New YorkNY10016 United States
Physical neural networks (PNNs) are a class of neural-like networks that leverage the properties of physical systems to perform computation. While PNNs are so far a niche research area with small-scale laboratory demo... 详细信息
来源: 评论