咨询与建议

限定检索结果

文献类型

  • 295 篇 期刊文献
  • 158 篇 会议
  • 6 册 图书

馆藏范围

  • 459 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 344 篇 工学
    • 272 篇 计算机科学与技术...
    • 190 篇 软件工程
    • 45 篇 控制科学与工程
    • 44 篇 信息与通信工程
    • 35 篇 光学工程
    • 30 篇 生物工程
    • 21 篇 生物医学工程(可授...
    • 18 篇 电气工程
    • 18 篇 电子科学与技术(可...
    • 15 篇 机械工程
    • 11 篇 化学工程与技术
    • 9 篇 材料科学与工程(可...
    • 8 篇 土木工程
    • 7 篇 力学(可授工学、理...
    • 6 篇 仪器科学与技术
    • 6 篇 建筑学
    • 6 篇 安全科学与工程
  • 180 篇 理学
    • 100 篇 数学
    • 60 篇 物理学
    • 44 篇 统计学(可授理学、...
    • 34 篇 生物学
    • 20 篇 系统科学
    • 17 篇 化学
    • 7 篇 地球物理学
  • 45 篇 管理学
    • 28 篇 管理科学与工程(可...
    • 22 篇 图书情报与档案管...
    • 17 篇 工商管理
  • 16 篇 法学
    • 16 篇 社会学
  • 7 篇 经济学
    • 7 篇 应用经济学
  • 6 篇 农学
  • 6 篇 医学
  • 3 篇 教育学
  • 2 篇 文学
  • 1 篇 哲学

主题

  • 15 篇 reinforcement le...
  • 10 篇 semantics
  • 9 篇 deep learning
  • 8 篇 approximation al...
  • 7 篇 decoding
  • 7 篇 machine learning
  • 7 篇 stochastic syste...
  • 6 篇 computer science
  • 6 篇 bayesian inferen...
  • 5 篇 adversarial mach...
  • 5 篇 speech recogniti...
  • 5 篇 complexity theor...
  • 5 篇 artificial intel...
  • 5 篇 accuracy
  • 4 篇 quantum control
  • 4 篇 deep neural netw...
  • 4 篇 quantum algorith...
  • 4 篇 neural networks
  • 4 篇 optimization
  • 4 篇 computational li...

机构

  • 71 篇 google deepmind ...
  • 48 篇 google
  • 28 篇 google deepmind
  • 26 篇 google research ...
  • 25 篇 mpi for intellig...
  • 21 篇 google research
  • 16 篇 google united st...
  • 13 篇 google inc.
  • 13 篇 deepmind united ...
  • 10 篇 department of co...
  • 10 篇 google inc. unit...
  • 9 篇 department of co...
  • 9 篇 google research ...
  • 8 篇 department of el...
  • 8 篇 department of co...
  • 8 篇 department of co...
  • 7 篇 department of co...
  • 7 篇 deepmind
  • 7 篇 heidelberg
  • 6 篇 department of el...

作者

  • 36 篇 bernhard schölko...
  • 35 篇 kevin murphy
  • 8 篇 müller klaus-rob...
  • 7 篇 farhi edward
  • 6 篇 jiang zhang
  • 6 篇 bakas spyridon
  • 6 篇 leibo joel z.
  • 6 篇 søgaard anders
  • 6 篇 menze bjoern
  • 6 篇 montavon grégoir...
  • 5 篇 summers ronald m...
  • 5 篇 baumgartner mich...
  • 5 篇 veličković petar
  • 5 篇 antonelli michel...
  • 5 篇 kopp-schneider a...
  • 5 篇 sadigh dorsa
  • 5 篇 isensee fabian
  • 5 篇 xia fei
  • 5 篇 demaine erik d.
  • 4 篇 kreshuk anna

语言

  • 395 篇 英文
  • 63 篇 其他
  • 1 篇 中文
检索条件"机构=Google DeepMind and Department of Computer Science and Technology"
459 条 记 录,以下是301-310 订阅
排序:
Common Limitations of Image Processing Metrics: A Picture Story
arXiv
收藏 引用
arXiv 2021年
作者: Reinke, Annika Tizabi, Minu D. Sudre, Carole H. Eisenmann, Matthias Rädsch, Tim Baumgartner, Michael Acion, Laura Antonelli, Michela Arbel, Tal Bakas, Spyridon Bankhead, Peter Benis, Arriel Blaschko, Matthew Buettner, Florian Cardoso, M. Jorge Chen, Jianxu Cheplygina, Veronika Christodoulou, Evangelia Cimini, Beth A. Collins, Gary S. Engelhardt, Sandy Farahani, Keyvan Ferrer, Luciana Galdran, Adrian van Ginneken, Bram Glocker, Ben Godau, Patrick Haase, Robert Hamprecht, Fred Hashimoto, Daniel A. Heckmann-Nötzel, Doreen Hirsch, Peter Hoffman, Michael M. Huisman, Merel Isensee, Fabian Jannin, Pierre Kahn, Charles E. Kainmueller, Dagmar Kainz, Bernhard Karargyris, Alexandros Karthikesalingam, Alan Kavur, A. Emre Kenngott, Hannes Kleesiek, Jens Kleppe, Andreas Koehler, Sven Kofler, Florian Kopp-Schneider, Annette Kooi, Thijs Kozubek, Michal Kreshuk, Anna Kurc, Tahsin Landman, Bennett A. Litjens, Geert Madani, Amin Maier-Hein, Klaus Martel, Anne L. Mattson, Peter Meijering, Erik Menze, Bjoern Moher, David Moons, Karel G.M. Müller, Henning Nichyporuk, Brennan Nickel, Felix Noyan, M. Alican Petersen, Jens Polat, Gorkem Rafelski, Susanne M. Rajpoot, Nasir Reyes, Mauricio Rieke, Nicola Riegler, Michael A. Rivaz, Hassan Saez-Rodriguez, Julio Sánchez, Clara I. Schroeter, Julien Saha, Anindo Selver, M. Alper Sharan, Lalith Shetty, Shravya Smeden, Maarten V.A.N. Stieltjes, Bram Summers, Ronald M. Taha, Abdel A. Tiulpin, Aleksei Tsaftaris, Sotirios A. Calster, Ben V.A.N. Varoquaux, Gaël Wiesenfarth, Manuel Yaniv, Ziv R. Jäger, Paul Maier-Hein, Lena Division of Intelligent Medical Systems and HI Helmholtz Imaging Heidelberg Germany Faculty of Mathematics and Computer Science Heidelberg University Heidelberg Germany Division of Intelligent Medical Systems Heidelberg Germany NCT Heidelberg DKFZ University Medical Center Heidelberg Germany MRC Unit for Lifelong Health and Ageing UCL Centre for Medical Image Computing Department of Computer Science University College London London United Kingdom School of Biomedical Engineering and Imaging Science King’s College London London United Kingdom Division of Medical Image Computing Heidelberg Germany Instituto de Cálculo CONICET – Universidad de Buenos Aires Buenos Aires Argentina Centre for Medical Image Computing University College London London United Kingdom McGill University Montréal Canada Division of Computational Pathology Dept of Pathology & Laboratory Medicine Indiana University School of Medicine IU Health Information and Translational Sciences Building Indianapolis United States University of Pennsylvania Richards Medical Research Laboratories FL7 PhiladelphiaPA United States Institute of Genetics and Cancer University of Edinburgh Edinburgh United Kingdom Department of Digital Medical Technologies Holon Institute of Technology Holon Israel European Federation for Medical Informatics Le Mont-sur-Lausanne Switzerland Center for Processing Speech and Images Department of Electrical Engineering KU Leuven Kasteelpark Arenberg 10 - box 2441 Leuven3001 Belgium Frankfurt/Mainz DKFZ UCT Frankfurt-Marburg Germany Heidelberg Germany Goethe University Frankfurt Department of Medicine Germany Goethe University Frankfurt Department of Informatics Germany Frankfurt Cancer Insititute Germany Leibniz-Institut für Analytische Wissenschaften – ISAS – e.V. Dortmund Germany Department of Computer Science IT University of Copenhagen Copenhagen Denmark Imaging Platform Broad Institute of MIT and Harvard CambridgeMA United States Centre for St
While the importance of automatic image analysis is continuously increasing, recent meta-research revealed major flaws with respect to algorithm validation. Performance metrics are particularly key for meaningful, obj... 详细信息
来源: 评论
A large annotated medical image dataset for the development and evaluation of segmentation algorithms
arXiv
收藏 引用
arXiv 2019年
作者: Simpson, Amber L. Antonelli, Michela Bakas, Spyridon Bilello, Michel Farahani, Keyvan Van Ginneken, Bram Kopp-Schneider, Annette Landman, Bennett A. Litjens, Geert Menze, Bjoern Ronneberger, Olaf Summers, Ronald M. Bilic, Patrick Christ, Patrick F. Do, Richard K.G. Gollub, Marc Golia-Pernicka, Jennifer Heckers, Stephan H. Jarnagin, William R. McHugo, Maureen K. Napel, Sandy Vorontsov, Eugene Maier-Hein, Lena Jorge Cardoso, M. Department of Surgery Memorial Sloan Kettering Cancer Center Centre for Medical Image Computing University College London Center for Biomedical Image Computing and Analytics University of Pennsylvania Division of Cancer Treatment and Diagnosis National Cancer Institute Department of Pathology Radboud University Medical Center Division of Biostatistics German Cancer Research Center Department of Electrical Engineering and Computer Science Vanderbilt University Department of Informatics Technische Universität München Google DeepMind Imaging Biomarkers and Computer-aided Diagnosis Lab Radiology and Imaging Sciences National Institutes of Health Clinical Center Department of Radiology Memorial Sloan Kettering Cancer Center Department of Psychiatry & Behavioral Sciences Vanderbilt University Medical Center Department of Radiology Stanford University Department of Computer Science and Software Engineering École Polytechnique de Montréal Division of Computer Assisted Medical Interventions German Cancer Research Center Department of Imaging and Biomedical Engineering King's College London
Semantic segmentation of medical images aims to associate a pixel with a label in a medical image without human initialization. The success of semantic segmentation algorithms is contingent on the availability of high... 详细信息
来源: 评论
Visibility testing and counting for uncertain segments  29
Visibility testing and counting for uncertain segments
收藏 引用
29th Canadian Conference on Computational Geometry, CCCG 2017
作者: Abam, Mohammad Ali Alipour, Sharareh Ghodsi, Mohammad Mahdian, Mohammad Computer Engineering Department Sharif University of Technology Iran School of Computer Science Iran School of Computer Science Iran Google Research United States
We study two well-known planar visibility problems, namely visibility testing and visibility counting, in a model where there is uncertainty about the input data. The standard versions of these problems are defined as... 详细信息
来源: 评论
Visual dynamics: Stochastic future generation via layered cross convolutional networks
arXiv
收藏 引用
arXiv 2018年
作者: Xue, Tianfan Wu, Jiajun Bouman, Katherine L. Freeman, William T. Google Inc. Mountain ViewCA94043 United States Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology CambridgeMA02139 United States Harvard University CambridgeMA02138 United States Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology Google Inc. CambridgeMA02139 United States
We study the problem of synthesizing a number of likely future frames from a single input image. In contrast to traditional methods that have tackled this problem in a deterministic or non-parametric way, we propose t... 详细信息
来源: 评论
NL-Augmenter A Framework for Task-Sensitive Natural Language Augmentation
arXiv
收藏 引用
arXiv 2021年
作者: Dhole, Kaustubh D. Gangal, Varun Gehrmann, Sebastian Gupta, Aadesh Li, Zhenhao Mahamood, Saad Mahendiran, Abinaya Mille, Simon Shrivastava, Ashish Tan, Samson Wu, Tongshuang Sohl-Dickstein, Jascha Choi, Jinho D. Hovy, Eduard Dušek, Ondřej Ruder, Sebastian Anand, Sajant Aneja, Nagender Banjade, Rabin Barthe, Lisa Behnke, Hanna Berlot-Attwell, Ian Boyle, Connor Brun, Caroline Sobrevilla Cabezudo, Marco Antonio Cahyawijaya, Samuel Chapuis, Emile Che, Wanxiang Choudhary, Mukund Clauss, Christian Colombo, Pierre Cornell, Filip Dagan, Gautier Das, Mayukh Dixit, Tanay Dopierre, Thomas Dray, Paul-Alexis Dubey, Suchitra Ekeinhor, Tatiana Giovanni, Marco Di Goyal, Tanya Gupta, Rishabh Hamla, Louanes Han, Sang Harel-Canada, Fabrice Honoré, Antoine Jindal, Ishan Joniak, Przemyslaw K. Kleyko, Denis Kovatchev, Venelin Krishna, Kalpesh Kumar, Ashutosh Langer, Stefan Lee, Seungjae Ryan Levinson, Corey James Liang, Hualou Liang, Kaizhao Liu, Zhexiong Lukyanenko, Andrey Marivate, Vukosi de Melo, Gerard Meoni, Simon Meyer, Maxime Mir, Afnan Moosavi, Nafise Sadat Muennighoff, Niklas Hon Mun, Timothy Sum Murray, Kenton Namysl, Marcin Obedkova, Maria Oli, Priti Pasricha, Nivranshu Pfister, Jan Plant, Richard Prabhu, Vinay Pais, Vasile Qin, Libo Raji, Shahab Rajpoot, Pawan Kumar Raunak, Vikas Rinberg, Roy Roberts, Nicholas Rodriguez, Juan Diego Roux, Claude Vasconcellos, P.H.S. Sai, Ananya B. Schmidt, Robin M. Scialom, Thomas Sefara, Tshephisho Shamsi, Saqib N. Shen, Xudong Shi, Yiwen Shi, Haoyue Shvets, Anna Siegel, Nick Sileo, Damien Simon, Jamie Singh, Chandan Sitelew, Roman Soni, Priyank Sorensen, Taylor Soto, William Srivastava, Aman Aditya Srivatsa, K.V. Sun, Tony Mukund Varma, T. Tabassum, A. Tan, Fiona Anting Teehan, Ryan Tiwari, Mo Tolkiehn, Marie Wang, Athena Wang, Zijian Wang, Zijie J. Wang, Gloria Wei, Fuxuan Wilie, Bryan Winata, Genta Indra Wu, Xinyi Wydmanski, Witold Xie, Tianbao Yaseen, Usama Yee, Michael A. Zhang, Jing Zhang, Yue ACKO Agara Amelia R&D New York United States Applied Research Laboratories The University of Texas at Austin United States Bloomberg Brigham Young University United States Carnegie Mellon University United States Center for Data and Computing in Natural Sciences Universität Hamburg Germany Charles River Analytics Charles University Prague Czech Republic Columbia University United States Council for Scientific and Industrial Research DeepMind United Kingdom Department of Computer Science University of Pretoria South Africa Drexel University United States Eberhard Karls University of Tübingen Germany Edinburgh Napier University United Kingdom Emory University United States Fablab by Inetum in Paris France Fraunhofer IAIS Germany Georgia Tech United States Google Brain United States Google Research United States Harbin Institute of Technology China Hasso Plattner Institute University of Potsdam Germany Hong Kong University of Science and Technology Hong Kong IBM Research IIT Delhi India IIT Madras India Illinois Mathematics and Science Academy United States Imperial College London United Kingdom Independent Indian Institute of Science Bangalore India Institut Teknologi Bandung Indonesia Institute of Data Science National University of Singapore Singapore International Institute of Information Technology Hyderabad India Jagiellonian University Poland Jean Monnet University France Johns Hopkins United States KTH Royal Institute of Technology Sweden KU Leuven Belgium MTS AI France Microsoft RedmondWA United States Mphasis NEXT Labs National University of Ireland Galway Ireland National University of Science and Technology Pakistan National University of Singapore Singapore Naver Labs Europe France Peking University China Politecnico di Milano University of Bologna Italy Polytechnic Institute of Paris France Pompeu Fabra University Spain Pontifical Catholic University of Minas Gerais Brazil Princeton University United States Rakuten India India Research Institu
Data augmentation is an important component in the robustness evaluation of models in natural language processing (NLP) and in enhancing the diversity of the data they are trained on. In this paper, we present NL-Augm... 详细信息
来源: 评论
Quantum computer systems for scientific discovery
arXiv
收藏 引用
arXiv 2019年
作者: Alexeev, Yuri Bacon, Dave Brown, Kenneth R. Calderbank, Robert Carr, Lincoln D. Chong, Frederic T. DeMarco, Brian Englund, Dirk Farhi, Edward Fefferman, Bill Gorshkov, Alexey V. Houck, Andrew Kim, Jungsang Kimmel, Shelby Lange, Michael Lloyd, Seth Lukin, Mikhail D. Maslov, Dmitri Maunz, Peter Monroe, Christopher Preskill, John Roetteler, Martin Savage, Martin J. Thompson, Jeff Argonne National Laboratory LemontIL United States Google Inc. SeattleWA United States Department of Electrical and Computer Engineering Duke University DurhamNC United States Department of Chemistry Duke University DurhamNC United States Department of Physics Duke University DurhamNC United States Department of Computer Science Department of Mathematics Duke University DurhamNC United States Department of Physics Colorado School of Mines GoldenCO United States Department of Computer Science University of Chicago ChicagoIL United States Department of Physics and IQUIST University of Illinois Urbana-ChampaignIL United States Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology CambridgeMA United States Google Inc. VeniceCA United States Department of Physics Massachusetts Institute of Technology CambridgeMA United States Joint Quantum Institute Joint Center for Quantum Information and Computer Science Department of Physics University of Maryland College ParkMD United States National Institute of Standards and Technology GaithersburgMD United States Department of Electrical Engineering Princeton University PrincetonNJ United States IonQ Inc. College ParkMD United States Department of Computer Science Middlebury College MiddleburyVT United States L3Harris Technologies MelboruneFL Australia Department of Mechanical Engineering Massachusetts Institute of Technology CambridgeMA United States Department of Physics Harvard University CambridgeMA United States IBM T.J. Watson Research Center Yorktown HeightsNY United States Sandia National Laboratories AlbuquerqueNM United States Institute for Quantum Information and Matter Walter Burke Institute for Theoretical Physics California Institute of Technology PasadenaCA United States Microsoft Quantum RedmondWA United States Institute for Nuclear Theory and Department of Physics University of Washington SeattleWA United States
The great promise of quantum computers comes with the dual challenges of building them and finding their useful applications. We argue that these two challenges should be considered together, by co-designing full-stac... 详细信息
来源: 评论
Leveraging contact forces for learning to grasp
arXiv
收藏 引用
arXiv 2018年
作者: Merzić, Hamza Bogdanovic, Miroslav Kappler, Daniel Righetti, Ludovic Bohg, Jeannette DeepMind London United Kingdom MPI for Intelligent Systems Tübingen Germany Tandon School of Engineering New York University United States Computer Science Department Stanford University United States Google X Robotics Mountain ViewCA United States
Grasping objects under uncertainty remains an open problem in robotics research. This uncertainty is often due to noisy or partial observations of the object pose or shape. To enable a robot to react appropriately to ... 详细信息
来源: 评论
Mitigation of Cosmic Ray Effect on Microwave Kinetic Inductance Detector Arrays
arXiv
收藏 引用
arXiv 2019年
作者: Karatsu, K. Endo, A. Bueno, J. de Visser, P.J. Barends, R. Thoen, D.J. Murugesan, V. Tomita, N. Baselmans, J.J.A. SRON Netherlands Institute for Space Research Sorbonnelaan 2 Utrecht3584CA Netherlands Department of Microelectronics Faculty of Electrical Engineering Mathematics and Computer Science Delft University of Technology Mekelweg 4 Delft2628CD Netherlands Kavli Institute of Nanoscience Faculty of Applied Sciences Delft University of Technology Lorentzweg 1 Delft2628CJ Netherlands Google Santa BarbaraCA93117 United States Department of Physics School of Science University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo113-0033 Japan
For space observatories, the glitches caused by high energy phonons created by the interaction of cosmic ray particles with the detector substrate lead to dead time during observation. Mitigating the impact of cosmic ... 详细信息
来源: 评论
Deep graph infomax
arXiv
收藏 引用
arXiv 2018年
作者: Veličković, Petar Fedus, William Hamilton, William L. Liò, Pietro Bengioy, Yoshua Hjelm, R. Devon Department of Computer Science and Technology University of Cambridge Mila - Québec Artificial Intelligence Institute Google Brain McGill University Université de Montréal Microsoft Research
We present Deep Graph Infomax (DGI), a general approach for learning node representations within graph-structured data in an unsupervised manner. DGI relies on maximizing mutual information between patch representatio... 详细信息
来源: 评论
Web science 2024: Conference Chairs' Welcome Message
Proceedings of the 16th ACM Web Science Conference, WebSci 2...
收藏 引用
Proceedings of the 16th ACM Web science Conference, WebSci 2024 2024年 III-X页
作者: Staab, Steffen Aiello, Luca Maria Mejova, Yelena Seneviratne, Oshani Sindermann, Cornelia Hagendorff, Thilo Brandes, Simone Rohlmann, Juliane Spaniol, Marc Kinder-Kurlanda, Katharina Faleńska, Agnieszka Heiberger, Raphael Sun, Jun Kaiser, Sierra De Choudhury, Munmun Weber, Matthew De Francisci Morales, Gianmarco Dunn, Adam Gadiraju, Ujwal Gaito, Sabrina Hooper, Silas Javarone, Marco Alberto Kalimeri, Kyriaki Kwak, Haewoon Maity, Suman Kalyan Mashhadi, Afra Mustafaraj, Eni Purohit, Hemant Rossetti, Giulio Sastry, Nishanth Srinivasa, Srinath Vaz-De-Melo, Pedro Weal, Mark Weber, Ingmar Weninger, Tim Withing, Mark Zubiaga, Arkaitz Ahlers, Dirk Tamime, Reham Al Alam, Sawood Alhoori, Hamed Andriotis, Panagiotis Bär, Dominik Bernstein, Mark Boratto, Ludovico Camargo, Chico Capozzi, Arthur Chelmis, Charalampos Vieira, Carolina Coimbra De Meo, Pasquale Dinh, Ly Dividino, Renata Doerfel, Stephan Farahbakhsh, Reza Ferreira, Carlos H.G. Flores-Saviaga, Claudia Florio, Komal Galdeman, Alessia Guo, Cheng Hakimov, Sherzod Rad, Radin Hamidi Helic, Denis Hohmann, Marilena Horawalavithana, Sameera Horne, Benjamin Ibanez-Gonzalez, Luis Jiang, Julie Jones, Shawn Kamdar, Maulik R. Kao, Hsien-Te Kassa, Yonas Mitike Kastrin, Andrej Kazama, Kazuhiro Kelly, Mat Khanday, Akib Khatua, Aparup Khudabukhsh, Ashiqur Krüger, Frank Kumari, Neha Lai, Mirko Lamba, Hemank Lee, Roy Ka-Wei Lee, Eun Liao, Yiming Lin, Wenqing Magelinski, Thomas Magnani, Matteo Hill, Benjamin Mako Manikonda, Lydia Masud, Sarah Mekouar, Soufiana Møller, Anders Giovanni Muthiah, Sakthi Ni, Congning Nishimura, Joel Nwala, Alexander Pera, Arianna Piao, Guangyuan Piccardi, Tiziano Pierri, Francesco Porcaro, Lorenzo Ramasco, Jose J. Reelfs, Jens Rezapour, Rezvaneh Salminen, Joni Šćepanović, Sanja Shahi, Gautam Kishore Sinha, Priyanka Smaragdakis, Georgios Smirnova, Inna Song, Melodie Yun-Ju Sosnovik, Vera Truong, Bao Tran Tsugawa, Sho Vasarhelyi, Orsolya D'Aurelio, Davide Vega Vekaria, Yash Vilella, Salvatore Viviani, Marco Wang, Yichen Wu, Siqi Yang, Kaicheng Zeng, Yilei Zha University of Stuttgart Germany IT University of Copenhagen Denmark ISI Foundation Italy Rensselaer Polytechnic Institute United States Université de Caen Normandie France University of Klagenfurt Austria University of Washington United States GESIS Germany Georgia Tech United States IIIT Bangalore India Rutgers University United States CENTAI Italy University of Sydney Australia Delft University of Technology Netherlands University of Milan Italy Canada Centro Ricerche Enrico Fermi UCL CBT Italy Indiana University Bloomington United States Northwestern University United States UW United States Wellesley College United States George Mason University United States CNRS France King's College London United Kingdom International Institute of Information Technology Bangalore India UFMG Brazil University of Southampton United Kingdom Saarland University Germany University of Notre Dame United States UPenn United States Queen Mary University of London United Kingdom Norwegian University of Science and Technology Norway Internet Archive United States Northern Illinois University United States University of the West of England United Kingdom LMU Munich Germany Eastgate Systems Inc. United States University of Cagliari Italy University of Exeter United Kingdom University of Turin Italy University at Albany State University of New York United States Max Planck Institute for Demographic Research Germany Vrije Universiteit Amsterdam Netherlands University of South Florida United States Brock University Canada Kiel University of Applied Sciences Germany Institut Mines-Télécom Télécom SudParis France Universidade Federal de Ouro Preto Brazil Northeastern University United States Università di Torino Dipartimento di Informatica Italy Clemson University Google United States TIB - Leibniz Information Centre for Science and Technology Germany Ryerson University Canada Graz University of Technology Austria University of Copenhagen Denmark Pacific Northwest National La
来源: 评论