咨询与建议

限定检索结果

文献类型

  • 295 篇 期刊文献
  • 158 篇 会议
  • 6 册 图书

馆藏范围

  • 459 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 343 篇 工学
    • 269 篇 计算机科学与技术...
    • 187 篇 软件工程
    • 44 篇 信息与通信工程
    • 42 篇 控制科学与工程
    • 35 篇 光学工程
    • 30 篇 生物工程
    • 22 篇 生物医学工程(可授...
    • 18 篇 电气工程
    • 18 篇 电子科学与技术(可...
    • 15 篇 机械工程
    • 11 篇 化学工程与技术
    • 9 篇 材料科学与工程(可...
    • 8 篇 土木工程
    • 7 篇 力学(可授工学、理...
    • 6 篇 仪器科学与技术
  • 180 篇 理学
    • 100 篇 数学
    • 60 篇 物理学
    • 44 篇 统计学(可授理学、...
    • 34 篇 生物学
    • 20 篇 系统科学
    • 17 篇 化学
    • 7 篇 地球物理学
  • 46 篇 管理学
    • 29 篇 管理科学与工程(可...
    • 22 篇 图书情报与档案管...
    • 18 篇 工商管理
  • 18 篇 法学
    • 18 篇 社会学
  • 7 篇 经济学
    • 7 篇 应用经济学
  • 7 篇 医学
    • 7 篇 基础医学(可授医学...
    • 7 篇 临床医学
  • 6 篇 农学
  • 4 篇 教育学
  • 2 篇 文学
  • 1 篇 哲学

主题

  • 15 篇 reinforcement le...
  • 10 篇 semantics
  • 9 篇 deep learning
  • 8 篇 approximation al...
  • 7 篇 decoding
  • 7 篇 machine learning
  • 7 篇 stochastic syste...
  • 6 篇 computer science
  • 6 篇 bayesian inferen...
  • 5 篇 adversarial mach...
  • 5 篇 speech recogniti...
  • 5 篇 complexity theor...
  • 5 篇 artificial intel...
  • 5 篇 accuracy
  • 4 篇 quantum control
  • 4 篇 deep neural netw...
  • 4 篇 quantum algorith...
  • 4 篇 neural networks
  • 4 篇 optimization
  • 4 篇 computational li...

机构

  • 71 篇 google deepmind ...
  • 48 篇 google
  • 28 篇 google deepmind
  • 26 篇 google research ...
  • 25 篇 mpi for intellig...
  • 21 篇 google research
  • 16 篇 google united st...
  • 13 篇 google inc.
  • 13 篇 deepmind united ...
  • 10 篇 department of co...
  • 10 篇 google inc. unit...
  • 10 篇 google research ...
  • 9 篇 department of co...
  • 8 篇 department of el...
  • 8 篇 department of co...
  • 8 篇 department of co...
  • 7 篇 department of co...
  • 7 篇 deepmind
  • 7 篇 department of el...
  • 7 篇 heidelberg

作者

  • 36 篇 bernhard schölko...
  • 35 篇 kevin murphy
  • 8 篇 müller klaus-rob...
  • 7 篇 farhi edward
  • 6 篇 jiang zhang
  • 6 篇 bakas spyridon
  • 6 篇 leibo joel z.
  • 6 篇 søgaard anders
  • 6 篇 menze bjoern
  • 6 篇 montavon grégoir...
  • 5 篇 summers ronald m...
  • 5 篇 baumgartner mich...
  • 5 篇 veličković petar
  • 5 篇 antonelli michel...
  • 5 篇 kopp-schneider a...
  • 5 篇 sadigh dorsa
  • 5 篇 isensee fabian
  • 5 篇 xia fei
  • 5 篇 demaine erik d.
  • 4 篇 kreshuk anna

语言

  • 395 篇 英文
  • 63 篇 其他
  • 1 篇 中文
检索条件"机构=Google DeepMind and Department of Computer Science and Technology"
459 条 记 录,以下是371-380 订阅
排序:
Algorithms for Cut Problems on Trees
Lecture Notes in Computer Science (including subseries Lectu...
收藏 引用
Lecture Notes in computer science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 2014年 8881卷 283-298页
作者: Kanj, Iyad Lin, Guohui Liu, Tian Tong, Weitian Xia, G. Xu, Jinhui Yang, Boting Zhang, Fenghui Zhang, Peng Zhu, Binhai School of Computing DePaul University 243 S. Wabash Avenue ChicagoIL60604 United States Department of Computing Science University of Alberta EdmontonABT6G 2E8 Canada School of Electronic Engineering and Computer Science Peking University Beijing100871 China Department of Computing Science Lafayette college EastonPA18042 United States 338 Davis Hall BuffaloNY14260 United States Department of Computer Science University of Regina ReginaSKS4S 0A2 Canada Google Kirkland 747 6th Street South KirklandWA98033 United States School of Computer Science and Technology Shandong University Jinan250101 China Department of Computer Science Montana State University BozemanMT59717 United States
We study the multicut on trees and the generalized multiway cut on trees problems. For the multicut on trees problem, we present a parameterized algorithm that runs in time O∗ (ρk), where ρ = _ √ 2 + 1 ≈ 1.555 is ... 详细信息
来源: 评论
Distributed hypothesis testing with social learning and symmetric fusion
Distributed hypothesis testing with social learning and symm...
收藏 引用
作者: Rhim, Joong Bum Goyal, Vivek K Department of Electrical Engineering and Computer Science Research Laboratory of Electronics Massachusetts Institute of Technology CambridgeMA02139 United States GroupM Data and Analytics New YorkNY10001 United States Boston University Massachusetts Institute of Technology United States Google United States Department of Electrical and Computer Engineering Boston University BostonMA02215 United States
We study the utility of social learning in a distributed detection model with agents sharing the same goal: a collective decision that optimizes an agreed upon criterion. We show that social learning is helpful in som... 详细信息
来源: 评论
Exploiting group recommendation functions for flexible preferences
Exploiting group recommendation functions for flexible prefe...
收藏 引用
International Conference on Data Engineering
作者: Senjuti Basu Roy Saravanan Thirumuruganathan Sihem Amer-Yahia Gautam Das Cong Yu Institute of Technology University of Washington Tacoma Computer Science Department University of Texas Arlington CNRS-LIG Google Research
We examine the problem of enabling the flexibility of updating one's preferences in group recommendation. In our setting, any group member can provide a vector of preferences that, in addition to past preferences ... 详细信息
来源: 评论
Input output kernel regression: supervised and semi-supervised structured output prediction with operator-valued kernels
The Journal of Machine Learning Research
收藏 引用
The Journal of Machine Learning Research 2016年 第1期17卷
作者: Kevin Murphy Bernhard Schölkopf Céline Brouard Marie Szafranski Florence D'Alché-Buc Google MPI for Intelligent Systems Helsinki Institute for Information Technology Department of Computer Science Aalto University Espoo Finland and IBISC Université d'Évry Val d'Essonne Évry Cedex France ENSIIE & LaMME Université d'Évry Val d'Essonne CNRS INRA Évry Cedex France and IBISC Université d'Évry Val d'Essonne Évry Cedex France LTCI CNRS Télécom ParisTech Université Paris-Saclay Paris France and IBISC Université d'Évry Val d'Essonne Évry Cedex France
In this paper, we introduce a novel approach, called Input Output Kernel Regression (IOKR), for learning mappings between structured inputs and structured outputs. The approach belongs to the family of Output Kernel R... 详细信息
来源: 评论
Programmable in-loop deblock filter processor for video decoders
Programmable in-loop deblock filter processor for video deco...
收藏 引用
IEEE Workshop on Signal Processing Systems (SIPS)
作者: Janne Janhunen Pekka Jääskeläinen Jari Hannuksela Tero Rintaluoma Aki Kuusela Centre for Wireless Communications University of Oulu Department of Pervasive Computing Tampere University of Technology Computer Science and Engineering department University of Oulu Google Finland
The short time to market cycle and the target to reduce design and verification costs are driving forces to design programmable implementations of the video processing algorithms. We present two processor architecture... 详细信息
来源: 评论
Endurance-aware cache line management for non-volatile caches
Endurance-aware cache line management for non-volatile cache...
收藏 引用
作者: Wang, Jue Dong, Xiangyu Xie, Yuan Jouppi, Norman P. Computer Science and Engineering Department Pennsylvania State University 111N 1st Building University Park PA 16802 United States Qualcomm Technology 5775 Morehouse Dr San Diego CA 92121 United States Google Inc. 1600 Amphitheatre Parkway Mountain View CA 94043 United States
Nonvolatile memories (NVMs) have the potential to replace low-level SRAM or eDRAM on-chip caches because NVMs save standby power and provide large cache capacity. However, limited write endurance is a common problem f... 详细信息
来源: 评论
Immutability
Lecture Notes in Computer Science (including subseries Lectu...
收藏 引用
Lecture Notes in computer science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 2013年 7850卷 233-269页
作者: Potanin, Alex Östlund, Johan Zibin, Yoav Ernst, Michael D. School of Engineering and Computer Science VUW Wellington New Zealand Department of Information Technology Uppsala University Uppsala Sweden Google New York NY United States Computer Science and Engineering University of Washington WA United States
One of the main reasons aliasing has to be controlled, as highlighted in another chapter [1] of this book [2], is the possibility that a variable can unexpectedly change its value without the referrer's knowledge.... 详细信息
来源: 评论
Cover tree Bayesian reinforcement learning
The Journal of Machine Learning Research
收藏 引用
The Journal of Machine Learning Research 2014年 第1期15卷
作者: Kevin Murphy Bernhard Schölkopf Nikolaos Tziortziotis Christos Dimitrakakis Konstantinos Blekas Google Department of Computer Science and Engineering University of Ioannina Greece Department of Computer Science and Engineering Chalmers University of Technology Sweden
This paper proposes an online tree-based Bayesian approach for reinforcement learning. For inference, we employ a generalised context tree model. This defines a distribution on multivariate Gaussian piecewise-linear m... 详细信息
来源: 评论
Deceptive answer prediction with user preference graph
Deceptive answer prediction with user preference graph
收藏 引用
51st Annual Meeting of the Association for Computational Linguistics, ACL 2013
作者: Li, Fangtao Gao, Yang Zhou, Shuchang Si, Xiance Dai, Decheng Google Research Mountain View Institute of Computing Technology CAS China State Key Laboratory of Computer Architecture Institute of Computing Technology CAS China Department of Computer Science and Technology Tsinghua University China
In Community question answering (QA) sites, malicious users may provide deceptive answers to promote their products or services. It is important to identify and filter out these deceptive answers. In this paper, we fi... 详细信息
来源: 评论
Gibbs max-margin topic models with data augmentation
The Journal of Machine Learning Research
收藏 引用
The Journal of Machine Learning Research 2014年 第1期15卷
作者: Kevin Murphy Bernhard Schölkopf Jun Zhu Ning Chen Hugh Perkins Bo Zhang Google State Key Lab of Intelligent Technology and Systems Tsinghua National Lab for Information Science and Technology Department of Computer Science and Technology Tsinghua University Beijing China
Max-margin learning is a powerful approach to building classifiers and structured output predictors. Recent work on max-margin supervised topic models has successfully integrated it with Bayesian topic models to disco... 详细信息
来源: 评论