咨询与建议

限定检索结果

文献类型

  • 295 篇 期刊文献
  • 158 篇 会议
  • 6 册 图书

馆藏范围

  • 459 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 343 篇 工学
    • 269 篇 计算机科学与技术...
    • 187 篇 软件工程
    • 44 篇 信息与通信工程
    • 42 篇 控制科学与工程
    • 35 篇 光学工程
    • 30 篇 生物工程
    • 22 篇 生物医学工程(可授...
    • 18 篇 电气工程
    • 18 篇 电子科学与技术(可...
    • 15 篇 机械工程
    • 11 篇 化学工程与技术
    • 9 篇 材料科学与工程(可...
    • 8 篇 土木工程
    • 7 篇 力学(可授工学、理...
    • 6 篇 仪器科学与技术
  • 180 篇 理学
    • 100 篇 数学
    • 60 篇 物理学
    • 44 篇 统计学(可授理学、...
    • 34 篇 生物学
    • 20 篇 系统科学
    • 17 篇 化学
    • 7 篇 地球物理学
  • 46 篇 管理学
    • 29 篇 管理科学与工程(可...
    • 22 篇 图书情报与档案管...
    • 18 篇 工商管理
  • 18 篇 法学
    • 18 篇 社会学
  • 7 篇 经济学
    • 7 篇 应用经济学
  • 7 篇 医学
    • 7 篇 基础医学(可授医学...
    • 7 篇 临床医学
  • 6 篇 农学
  • 4 篇 教育学
  • 2 篇 文学
  • 1 篇 哲学

主题

  • 15 篇 reinforcement le...
  • 10 篇 semantics
  • 9 篇 deep learning
  • 8 篇 approximation al...
  • 7 篇 decoding
  • 7 篇 machine learning
  • 7 篇 stochastic syste...
  • 6 篇 computer science
  • 6 篇 bayesian inferen...
  • 5 篇 adversarial mach...
  • 5 篇 speech recogniti...
  • 5 篇 complexity theor...
  • 5 篇 artificial intel...
  • 5 篇 accuracy
  • 4 篇 quantum control
  • 4 篇 deep neural netw...
  • 4 篇 quantum algorith...
  • 4 篇 neural networks
  • 4 篇 optimization
  • 4 篇 computational li...

机构

  • 71 篇 google deepmind ...
  • 48 篇 google
  • 28 篇 google deepmind
  • 26 篇 google research ...
  • 25 篇 mpi for intellig...
  • 21 篇 google research
  • 16 篇 google united st...
  • 13 篇 google inc.
  • 13 篇 deepmind united ...
  • 10 篇 department of co...
  • 10 篇 google inc. unit...
  • 10 篇 google research ...
  • 9 篇 department of co...
  • 8 篇 department of el...
  • 8 篇 department of co...
  • 8 篇 department of co...
  • 7 篇 department of co...
  • 7 篇 deepmind
  • 7 篇 department of el...
  • 7 篇 heidelberg

作者

  • 36 篇 bernhard schölko...
  • 35 篇 kevin murphy
  • 8 篇 müller klaus-rob...
  • 7 篇 farhi edward
  • 6 篇 jiang zhang
  • 6 篇 bakas spyridon
  • 6 篇 leibo joel z.
  • 6 篇 søgaard anders
  • 6 篇 menze bjoern
  • 6 篇 montavon grégoir...
  • 5 篇 summers ronald m...
  • 5 篇 baumgartner mich...
  • 5 篇 veličković petar
  • 5 篇 antonelli michel...
  • 5 篇 kopp-schneider a...
  • 5 篇 sadigh dorsa
  • 5 篇 isensee fabian
  • 5 篇 xia fei
  • 5 篇 demaine erik d.
  • 4 篇 kreshuk anna

语言

  • 395 篇 英文
  • 63 篇 其他
  • 1 篇 中文
检索条件"机构=Google DeepMind and Department of Computer Science and Technology"
459 条 记 录,以下是381-390 订阅
排序:
Bayesian inference with posterior regularization and applications to infinite latent SVMs
The Journal of Machine Learning Research
收藏 引用
The Journal of Machine Learning Research 2014年 第1期15卷
作者: Kevin Murphy Bernhard Schölkopf Jun Zhu Ning Chen Eric P. Xing Google Department of Computer Science and Technology State Key Laboratory of Intelligent Technology and Systems Tsinghua National Laboratory for Information Science and Technology Tsinghua University Beijing China School of Computer Science Carnegie Mellon University Pittsburgh PA
Existing Bayesian models, especially nonparametric Bayesian methods, rely on specially conceived priors to incorporate domain knowledge for discovering improved latent representations. While priors affect posterior di... 详细信息
来源: 评论
A scalable approach to column-based low-rank matrix approximation
A scalable approach to column-based low-rank matrix approxim...
收藏 引用
23rd International Joint Conference on Artificial Intelligence, IJCAI 2013
作者: Pi, Yifan Peng, Haoruo Zhou, Shuchang Zhang, Zhihua Institute for Theoretical Computer Science IIIS Tsinghua University Beijing 100084 China Department of Computer Science and Technology Tsinghua University Beijing 100084 China State Key Laboratory of Computer Architecture Institute of Computing Technology Chinese Academy of Sciences Beijing 100190 China Google Inc. Beijing 100084 China College of Computer Science and Technology Zhejiang University Hangzhou 310027 China
In this paper, we address the column-based low-rank matrix approximation problem using a novel parallel approach. Our approach is based on the divide-and-combine idea. We first perform column selection on submatrices ... 详细信息
来源: 评论
How long will she call me? Distribution, social theory and duration prediction
How long will she call me? Distribution, social theory and d...
收藏 引用
European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, ECML PKDD 2013
作者: Dong, Yuxiao Tang, Jie Lou, Tiancheng Wu, Bin Chawla, Nitesh V. Department of Computer Science and Engineering University of Notre Dame United States Department of Computer Science and Technology Tsinghua University China Google Inc. United States Beijing University of Posts and Telecommunications China Interdisciplinary Center for Network Science and Applications University of Notre Dame United States
Call duration analysis is a key issue for understanding underlying patterns of (mobile) phone users. In this paper, we study to which extent the duration of a call between users can be predicted in a dynamic mobile ne... 详细信息
来源: 评论
Active learning using smooth relative regret approximations with applications
The Journal of Machine Learning Research
收藏 引用
The Journal of Machine Learning Research 2014年 第1期15卷
作者: Kevin Murphy Bernhard Schölkopf Nir Ailon Ron Begleiter Esther Ezra Google Department of Computer Science Technion Israel Institute of Technology Haifa Israel Coutrant Institute of Mathematical Science New York University New York NY
The disagreement coeffcient of Hanneke has become a central data independent invariant in proving active learning rates. It has been shown in various ways that a concept class with low complexity together with a bound... 详细信息
来源: 评论
Efficient state-space inference of periodic latent force models
The Journal of Machine Learning Research
收藏 引用
The Journal of Machine Learning Research 2014年 第1期15卷
作者: Kevin Murphy Bernhard Schölkopf Steven Reece Siddhartha Ghosh Alex Rogers Stephen Roberts Nicholas R. Jennings Google Department of Engineering Science University of Oxford Oxford UK Electronics and Computer Science University of Southampton Southampton UK Electronics and Computer Science University of Southampton Southampton UK and Department of Computing and Information Technology King Abdulaziz University Saudi Arabia
Latent force models (LFM) are principled approaches to incorporating solutions to differential equations within non-parametric inference methods. Unfortunately, the development and application of LFMs can be inhibited... 详细信息
来源: 评论
Reinforcement learning for closed-loop propofol anesthesia: a study in human volunteers
The Journal of Machine Learning Research
收藏 引用
The Journal of Machine Learning Research 2014年 第1期15卷
作者: Kevin Murphy Bernhard Schölkopf Brett L. Moore Larry D. Pyeatt Vivekanand Kulkarni Periklis Panousis Kevin Padrez Anthony G. Doufas Google Department of Computer Science Texas Tech University Lubbock TX Department of Mathematics and Computer Science South Dakota School of Mines and Technology Rapid City SD Department of Anesthesiology Perioperative and Pain Medicine Stanford University School of Medicine Stanford CA
Clinical research has demonstrated the efficacy of closed-loop control of anesthesia using the bispectral index of the electroencephalogram as the controlled variable. These controllers have evolved to yield patient-s... 详细信息
来源: 评论
Parallelizing exploration-exploitation tradeoffs in Gaussian process bandit optimization
The Journal of Machine Learning Research
收藏 引用
The Journal of Machine Learning Research 2014年 第1期15卷
作者: Kevin Murphy Bernhard Schölkopf Thomas Desautels Andreas Krause Joel W. Burdick Google University College London London UK Department of Computer Science ETH Zurich Zürich Switzerland Department of Mechanical Engineering California Institute of Technology Pasadena CA
How can we take advantage of opportunities for experimental parallelization in exploration-exploitation tradeoffs? In many experimental scenarios, it is often desirable to execute experiments simultaneously or in batc... 详细信息
来源: 评论
On the bayes-optimality of F-measure maximizers
The Journal of Machine Learning Research
收藏 引用
The Journal of Machine Learning Research 2014年 第1期15卷
作者: Kevin Murphy Bernhard Schölkopf Willem Waegeman Krzysztof Dembczyńki Arkadiusz Jachnik Weiwei Cheng Eyke Hüllermeier Google Department of Mathematical Modelling Statistics and Bioinformatics Ghent University Ghent Belgium Institute of Computing Science Poznan University of Technology Poznan Poland Amazon Development Center Germany Berlin Germany Department of Computer Science University of Paderborn Paderborn Germany
The F-measure, which has originally been introduced in information retrieval, is nowadays routinely used as a performance metric for problems such as binary classification, multi-label classification, and structured o... 详细信息
来源: 评论
Particle gibbs with ancestor sampling
The Journal of Machine Learning Research
收藏 引用
The Journal of Machine Learning Research 2014年 第1期15卷
作者: Kevin Murphy Bernhard Schölkopf Fredrik Lindsten Michael I. Jordan Thomas B. Schön Google Department of Engineering University of Cambridge Cambridge UK and Division of Automatic Control Linköping University Linköping Sweden Computer Science Division and Department of Statistics University of California Berkeley CA Department of Information Technology Uppsala University Uppsala Sweden
Particle Markov chain Monte Carlo (PMCMC) is a systematic way of combining the two main tools used for Monte Carlo statistical inference: sequential Monte Carlo (SMC) and Markov chain Monte Carlo (MCMC). We present a ... 详细信息
来源: 评论
Detecting click fraud in online advertising: a data mining approach
The Journal of Machine Learning Research
收藏 引用
The Journal of Machine Learning Research 2014年 第1期15卷
作者: Kevin Murphy Bernhard Schölkopf Richard Oentaryo Ee-Peng Lim Michael Finegold David Lo Feida Zhu Clifton Phua Eng-Yeow Cheu Ghim-Eng Yap Kelvin Sim Minh Nhut Nguyen Kasun Perera Bijay Neupane Mustafa Faisal Zeyar Aung Wei Lee Woon Wei Chen Dhaval Patel Daniel Berrar Google Living Analytics Research Centre Singapore Management University Singapore SAS Institute Pte. Ltd. Singapore Data Analytics Department Institute for Infocomm Research Singapore Masdar Institute of Science and Technology Abu Dhabi United Arab Emirates Institute for Infocomm Research Singapore Department of Computer Science and Engineering Indian Institute of Technology Roorkee Roorkee Uttarakhand India Interdisciplinary Graduate School of Science and Engineering Tokyo Institute of Technology Yokohama Japan
Click fraud-the deliberate clicking on advertisements with no real interest on the product or service offered-is one of the most daunting problems in online advertising. Building an effective fraud detection method is... 详细信息
来源: 评论