咨询与建议

限定检索结果

文献类型

  • 295 篇 期刊文献
  • 158 篇 会议
  • 6 册 图书

馆藏范围

  • 459 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 344 篇 工学
    • 272 篇 计算机科学与技术...
    • 190 篇 软件工程
    • 45 篇 控制科学与工程
    • 44 篇 信息与通信工程
    • 35 篇 光学工程
    • 30 篇 生物工程
    • 21 篇 生物医学工程(可授...
    • 18 篇 电气工程
    • 18 篇 电子科学与技术(可...
    • 15 篇 机械工程
    • 11 篇 化学工程与技术
    • 9 篇 材料科学与工程(可...
    • 8 篇 土木工程
    • 7 篇 力学(可授工学、理...
    • 6 篇 仪器科学与技术
    • 6 篇 建筑学
    • 6 篇 安全科学与工程
  • 180 篇 理学
    • 100 篇 数学
    • 60 篇 物理学
    • 44 篇 统计学(可授理学、...
    • 34 篇 生物学
    • 20 篇 系统科学
    • 17 篇 化学
    • 7 篇 地球物理学
  • 45 篇 管理学
    • 28 篇 管理科学与工程(可...
    • 22 篇 图书情报与档案管...
    • 17 篇 工商管理
  • 16 篇 法学
    • 16 篇 社会学
  • 7 篇 经济学
    • 7 篇 应用经济学
  • 6 篇 农学
  • 6 篇 医学
  • 3 篇 教育学
  • 2 篇 文学
  • 1 篇 哲学

主题

  • 15 篇 reinforcement le...
  • 10 篇 semantics
  • 9 篇 deep learning
  • 8 篇 approximation al...
  • 7 篇 decoding
  • 7 篇 machine learning
  • 7 篇 stochastic syste...
  • 6 篇 computer science
  • 6 篇 bayesian inferen...
  • 5 篇 adversarial mach...
  • 5 篇 speech recogniti...
  • 5 篇 complexity theor...
  • 5 篇 artificial intel...
  • 5 篇 accuracy
  • 4 篇 quantum control
  • 4 篇 deep neural netw...
  • 4 篇 quantum algorith...
  • 4 篇 neural networks
  • 4 篇 optimization
  • 4 篇 computational li...

机构

  • 71 篇 google deepmind ...
  • 48 篇 google
  • 28 篇 google deepmind
  • 26 篇 google research ...
  • 25 篇 mpi for intellig...
  • 21 篇 google research
  • 16 篇 google united st...
  • 13 篇 google inc.
  • 13 篇 deepmind united ...
  • 10 篇 department of co...
  • 10 篇 google inc. unit...
  • 9 篇 department of co...
  • 9 篇 google research ...
  • 8 篇 department of el...
  • 8 篇 department of co...
  • 8 篇 department of co...
  • 7 篇 department of co...
  • 7 篇 deepmind
  • 7 篇 heidelberg
  • 6 篇 department of el...

作者

  • 36 篇 bernhard schölko...
  • 35 篇 kevin murphy
  • 8 篇 müller klaus-rob...
  • 7 篇 farhi edward
  • 6 篇 jiang zhang
  • 6 篇 bakas spyridon
  • 6 篇 leibo joel z.
  • 6 篇 søgaard anders
  • 6 篇 menze bjoern
  • 6 篇 montavon grégoir...
  • 5 篇 summers ronald m...
  • 5 篇 baumgartner mich...
  • 5 篇 veličković petar
  • 5 篇 antonelli michel...
  • 5 篇 kopp-schneider a...
  • 5 篇 sadigh dorsa
  • 5 篇 isensee fabian
  • 5 篇 xia fei
  • 5 篇 demaine erik d.
  • 4 篇 kreshuk anna

语言

  • 395 篇 英文
  • 63 篇 其他
  • 1 篇 中文
检索条件"机构=Google DeepMind and Department of Computer Science and Technology"
459 条 记 录,以下是41-50 订阅
排序:
AI Will Always Love You: Studying Implicit Biases in Romantic AI Companions
arXiv
收藏 引用
arXiv 2025年
作者: Grogan, Clare Kay, Jackie Pérez-Ortiz, María Centre for Artificial Intelligence Department of Computer Science UCL United Kingdom Google Deepmind United Kingdom
While existing studies have recognised explicit biases in generative models, including occupational gender biases, the nuances of gender stereotypes and expectations of relationships between users and AI companions re... 详细信息
来源: 评论
REDUCR: robust data downsampling using class priority reweighting  24
REDUCR: robust data downsampling using class priority reweig...
收藏 引用
Proceedings of the 38th International Conference on Neural Information Processing Systems
作者: William Bankes George Hughes Ilija Bogunovic Zi Wang Department of Computer Science University College London Department of Electrical Engineering University College London Google DeepMind
Modern machine learning models are becoming increasingly expensive to train for real-world image and text classification tasks, where massive web-scale data is collected in a streaming fashion. To reduce the training ...
来源: 评论
Value Profiles for Encoding Human Variation
arXiv
收藏 引用
arXiv 2025年
作者: Sorensen, Taylor Mishra, Pushkar Patel, Roma Tessler, Michael Henry Bakker, Michiel Evans, Georgina Gabriel, Iason Goodman, Noah Rieser, Verena Department of Computer Science University of Washington SeattleWA United States Google DeepMind London United Kingdom
Modelling human variation in rating tasks is crucial for enabling AI systems for personalization, pluralistic model alignment, and computational social science. We propose representing individuals using value profiles... 详细信息
来源: 评论
Distilling and Retrieving Generalizable Knowledge for Robot Manipulation via Language Corrections
Distilling and Retrieving Generalizable Knowledge for Robot ...
收藏 引用
IEEE International Conference on Robotics and Automation (ICRA)
作者: Lihan Zha Yuchen Cui Li-Heng Lin Minae Kwon Montserrat Gonzalez Arenas Andy Zeng Fei Xia Dorsa Sadigh Computer Science Department Stanford University Stanford CA USA Google Deepmind Moutain View CA
Today’s robot policies exhibit subpar performance when faced with the challenge of generalizing to novel environments. Human corrective feedback is a crucial form of guidance to enable such generalization. However, a... 详细信息
来源: 评论
Would I have gotten that reward? long-term credit assignment by counterfactual contribution analysis  23
Would I have gotten that reward? long-term credit assignment...
收藏 引用
Proceedings of the 37th International Conference on Neural Information Processing Systems
作者: Alexander Meulemans Simon Schug Seijin Kobayashi Nathaniel D. Daw Gregory Wayne Department of Computer Science ETH Zürich Google DeepMind and Princeton Neuroscience Institute Princeton University and Department of Psychology Princeton University Google DeepMind
To make reinforcement learning more sample efficient, we need better credit assignment methods that measure an action's influence on future rewards. Building upon Hindsight Credit Assignment (HCA) [1], we introduc...
来源: 评论
FRAPPÉ: A Group Fairness Framework for Post-Processing Everything
arXiv
收藏 引用
arXiv 2023年
作者: Ţifrea, Alexandru Lahoti, Preethi Packer, Ben Halpern, Yoni Beirami, Ahmad Prost, Flavien Department of Computer Science ETH Zurich Switzerland Google DeepMind United Kingdom
Despite achieving promising fairness-error tradeoffs, in-processing mitigation techniques for group fairness cannot be employed in numerous practical applications with limited computation resources or no access to the... 详细信息
来源: 评论
Adapting to Evolving Adversaries with Regularized Continual Robust Training
arXiv
收藏 引用
arXiv 2025年
作者: Dai, Sihui Cianfarani, Christian Bhagoji, Arjun Nitin Sehwag, Vikash Mittal, Prateek Department of Electrical and Computer Engineering Princeton University United States Department of Computer Science University of Chicago United States Google Deepmind United Kingdom
Robust training methods typically defend against specific attack types, such as p attacks with fixed budgets, and rarely account for the fact that defenders may encounter new attacks over time. A natural solution is t... 详细信息
来源: 评论
SocialJax: An Evaluation Suite for Multi-agent Reinforcement Learning in Sequential Social Dilemmas
arXiv
收藏 引用
arXiv 2025年
作者: Guo, Zihao Willis, Richard Shi, Shuqing Tomilin, Tristan Leibo, Joel Z. Du, Yali Department of Informatics King’s College London United Kingdom Mathematics and Computer Science Eindhoven University of Technology Netherlands Google DeepMind United Kingdom
Social dilemmas pose a significant challenge in the field of multi-agent reinforcement learning (MARL). Melting Pot is an extensive framework designed to evaluate social dilemma environments, providing an evaluation p... 详细信息
来源: 评论
Feature Aggregation with Latent Generative Replay for Federated Continual Learning of Socially Appropriate Robot Behaviours
arXiv
收藏 引用
arXiv 2024年
作者: Churamani, Nikhil Checker, Saksham Dogan, Fethiye Irmak Chiang, Hao-Tien Lewis Gunes, Hatice Department of Computer Science and Technology University of Cambridge United Kingdom King’s College London United Kingdom Google DeepMind United Kingdom
It is critical for robots to explore Federated Learning (FL) settings where several robots, deployed in parallel, can learn independently while also sharing their learning with each other. This collaborative learning ... 详细信息
来源: 评论
AugInsert: Learning Robust Visual-Force Policies via Data Augmentation for Object Assembly Tasks
arXiv
收藏 引用
arXiv 2024年
作者: Diaz, Ryan Imdieke, Adam Veeriah, Vivek Desingh, Karthik Department of Computer Science and Engineering The University of Minnesota Twin Cities United States Google DeepMind United Kingdom
This paper primarily focuses on learning robust visual-force policies in the context of high-precision object assembly tasks. Specifically, we focus on the contact phase of the assembly task where both objects (peg an... 详细信息
来源: 评论