咨询与建议

限定检索结果

文献类型

  • 295 篇 期刊文献
  • 158 篇 会议
  • 6 册 图书

馆藏范围

  • 459 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 344 篇 工学
    • 272 篇 计算机科学与技术...
    • 190 篇 软件工程
    • 45 篇 控制科学与工程
    • 44 篇 信息与通信工程
    • 35 篇 光学工程
    • 30 篇 生物工程
    • 21 篇 生物医学工程(可授...
    • 18 篇 电气工程
    • 18 篇 电子科学与技术(可...
    • 15 篇 机械工程
    • 11 篇 化学工程与技术
    • 9 篇 材料科学与工程(可...
    • 8 篇 土木工程
    • 7 篇 力学(可授工学、理...
    • 6 篇 仪器科学与技术
    • 6 篇 建筑学
    • 6 篇 安全科学与工程
  • 180 篇 理学
    • 100 篇 数学
    • 60 篇 物理学
    • 44 篇 统计学(可授理学、...
    • 34 篇 生物学
    • 20 篇 系统科学
    • 17 篇 化学
    • 7 篇 地球物理学
  • 45 篇 管理学
    • 28 篇 管理科学与工程(可...
    • 22 篇 图书情报与档案管...
    • 17 篇 工商管理
  • 16 篇 法学
    • 16 篇 社会学
  • 7 篇 经济学
    • 7 篇 应用经济学
  • 6 篇 农学
  • 6 篇 医学
  • 3 篇 教育学
  • 2 篇 文学
  • 1 篇 哲学

主题

  • 15 篇 reinforcement le...
  • 10 篇 semantics
  • 9 篇 deep learning
  • 8 篇 approximation al...
  • 7 篇 decoding
  • 7 篇 machine learning
  • 7 篇 stochastic syste...
  • 6 篇 computer science
  • 6 篇 bayesian inferen...
  • 5 篇 adversarial mach...
  • 5 篇 speech recogniti...
  • 5 篇 complexity theor...
  • 5 篇 artificial intel...
  • 5 篇 accuracy
  • 4 篇 quantum control
  • 4 篇 deep neural netw...
  • 4 篇 quantum algorith...
  • 4 篇 neural networks
  • 4 篇 optimization
  • 4 篇 computational li...

机构

  • 71 篇 google deepmind ...
  • 48 篇 google
  • 28 篇 google deepmind
  • 26 篇 google research ...
  • 25 篇 mpi for intellig...
  • 21 篇 google research
  • 16 篇 google united st...
  • 13 篇 google inc.
  • 13 篇 deepmind united ...
  • 10 篇 department of co...
  • 10 篇 google inc. unit...
  • 9 篇 department of co...
  • 9 篇 google research ...
  • 8 篇 department of el...
  • 8 篇 department of co...
  • 8 篇 department of co...
  • 7 篇 department of co...
  • 7 篇 deepmind
  • 7 篇 heidelberg
  • 6 篇 department of el...

作者

  • 36 篇 bernhard schölko...
  • 35 篇 kevin murphy
  • 8 篇 müller klaus-rob...
  • 7 篇 farhi edward
  • 6 篇 jiang zhang
  • 6 篇 bakas spyridon
  • 6 篇 leibo joel z.
  • 6 篇 søgaard anders
  • 6 篇 menze bjoern
  • 6 篇 montavon grégoir...
  • 5 篇 summers ronald m...
  • 5 篇 baumgartner mich...
  • 5 篇 veličković petar
  • 5 篇 antonelli michel...
  • 5 篇 kopp-schneider a...
  • 5 篇 sadigh dorsa
  • 5 篇 isensee fabian
  • 5 篇 xia fei
  • 5 篇 demaine erik d.
  • 4 篇 kreshuk anna

语言

  • 395 篇 英文
  • 63 篇 其他
  • 1 篇 中文
检索条件"机构=Google DeepMind and Department of Computer Science and Technology"
459 条 记 录,以下是81-90 订阅
排序:
Deep image synthesis from intuitive user input:A review and perspectives
收藏 引用
Computational Visual Media 2022年 第1期8卷 3-31页
作者: Yuan Xue Yuan-Chen Guo Han Zhang Tao Xu Song-Hai Zhang Xiaolei Huang College of Information Sciences and Technology the Pennsylvania State UniversityUniversity ParkPAUSA Department of Computer Science and Technology Tsinghua UniversityBeijingChinaand Beijing National Research Center for Information Science and Technology(BNRist)Tsinghua UniversityBeijingChina Google Brain Mountain ViewCAUSA Facebook Menlo ParkCAUSA.
In many applications of computer graphics,art,and design,it is desirable for a user to provide intuitive non-image input,such as text,sketch,stroke,graph,or layout,and have a computer system automatically generate pho... 详细信息
来源: 评论
PinchCatcher: Enabling Multi-selection for Gaze+Pinch  25
PinchCatcher: Enabling Multi-selection for Gaze+Pinch
收藏 引用
2025 CHI Conference on Human Factors in Computing Systems, CHI 2025
作者: Kim, Jinwook Park, Sangmin Zhou, Qiushi Gonzalez-Franco, Mar Lee, Jeongmi Pfeuffer, Ken Graduate School of Culture Technology Kaist Daejeon South Korea Department of Computer Science Aarhus University Aarhus Denmark Google Seattle WA United States
This paper investigates multi-selection in XR interfaces based on eye and hand interaction. We propose enabling multi-selection using different variations of techniques that combine gaze with a semi-pinch gesture, all... 详细信息
来源: 评论
Corrective Retrieval Augmented Generation
arXiv
收藏 引用
arXiv 2024年
作者: Yan, Shi-Qi Gu, Jia-Chen Zhu, Yun Ling, Zhen-Hua National Engineering Research Center of Speech and Language Information Processing University of Science and Technology of China Hefei China Department of Computer Science University of California Los Angeles United States Google DeepMind United Kingdom
Large language models (LLMs) inevitably exhibit hallucinations since the accuracy of generated texts cannot be secured solely by the parametric knowledge they encapsulate. Although retrieval-augmented generation (RAG)... 详细信息
来源: 评论
Variance-Reduced Gradient Estimation via Noise-Reuse in Online Evolution Strategies
arXiv
收藏 引用
arXiv 2023年
作者: Li, Oscar Harrison, James Sohl-Dickstein, Jascha Smith, Virginia Metz, Luke Machine Learning Department School of Computer Science Carnegie Mellon University United States Google DeepMind United Kingdom OpenAI
Unrolled computation graphs are prevalent throughout machine learning but present challenges to automatic differentiation (AD) gradient estimation methods when their loss functions exhibit extreme local sensitivtiy, d... 详细信息
来源: 评论
Online Learning for Obstacle Avoidance
arXiv
收藏 引用
arXiv 2023年
作者: Snyder, David Booker, Meghan Simon, Nathaniel Xia, Wenhan Suo, Daniel Hazan, Elad Majumdar, Anirudha Lab Princeton University United States Department of Computer Science Princeton University United States Google DeepMind United Kingdom
We approach the fundamental problem of obstacle avoidance for robotic systems via the lens of online learning. In contrast to prior work that either assumes worst-case realizations of uncertainty in the environment or... 详细信息
来源: 评论
Distilling and Retrieving Generalizable Knowledge for Robot Manipulation via Language Corrections
arXiv
收藏 引用
arXiv 2023年
作者: Zha, Lihan Cui, Yuchen Lin, Li-Heng Kwon, Minae Arenas, Montserrat Gonzalez Zeng, Andy Xia, Fei Sadigh, Dorsa Computer Science Department Stanford University StanfordCA United States Google Deepmind Mountain ViewCA United States
Today’s robot policies exhibit subpar performance when faced with the challenge of generalizing to novel environments. Human corrective feedback is a crucial form of guidance to enable such generalization. However, a... 详细信息
来源: 评论
On imitation in mean-field games  23
On imitation in mean-field games
收藏 引用
Proceedings of the 37th International Conference on Neural Information Processing Systems
作者: Giorgia Ramponi Pavel Kolev Olivier Pietquin Niao He Mathieu Laurière Matthieu Geist ETH AI Center Zurich Max Planck Institute for Intelligent Systems Tübingen Germany Google DeepMind ETH Zurich Department of Computer Science Google DeepMind and Shanghai Frontiers Science Center of Artificial Intelligence and Deep Learning NYU Shanghai
We explore the problem of imitation learning (IL) in the context of mean-field games (MFGs), where the goal is to imitate the behavior of a population of agents following a Nash equilibrium policy according to some un...
来源: 评论
Agricultural Landscape Understanding At Country-Scale
arXiv
收藏 引用
arXiv 2024年
作者: Dua, Radhika Saxena, Nikita Agarwal, Aditi Wilson, Alex Singh, Gaurav Tran, Hoang Deshpande, Ishan Kaur, Amandeep Aggarwal, Gaurav Nath, Chandan Basu, Arnab Batchu, Vishal Holla, Sharath Kurle, Bindiya Missura, Olana Aggarwal, Rahul Garg, Shubhika Shah, Nishi Singh, Avneet Tewari, Dinesh Dondzik, Agata Adsul, Bharat Sohoni, Milind Praveen, Asim Rama Dangi, Aaryan Kadivar, Lisan Abhishek, E. Sudhansu, Niranjan Hattekar, Kamlakar Datar, Sameer Chaithanya, Musty Krishna Reddy, Anumas Ranjith Kumar, Aashish Tirumala, Betala Laxmi Talekar, Alok Google DeepMind India Google United States Department of Computer Science IIT Bombay India Department of Land Records State Government of Maharashtra India TeamUp India Department of Agriculture State Government of Telangana India Department of Information Technology Electronics & Communication State Government of Telangana India
Agricultural landscapes are quite complex, especially in the Global South where fields are smaller, and agricultural practices are more varied. In this paper we report on our progress in digitizing the agricultural la...
来源: 评论
Position: considerations for differentially private learning with large-scale public pretraining  24
Position: considerations for differentially private learning...
收藏 引用
Proceedings of the 41st International Conference on Machine Learning
作者: Florian Tramèr Gautam Kamath Nicholas Carlini Department of Computer Science ETH Zürich Zürich Switzerland Cheriton School of Computer Science University of Waterloo Waterloo Ontario Canada and Vector Institute Toronto Ontario Canada Google DeepMind Mountain View
The performance of differentially private machine learning can be boosted significantly by leveraging the transfer learning capabilities of nonprivate models pretrained on large public datasets. We critically review t...
来源: 评论
Learning energy-based prior model with diffusion-amortized MCMC  23
Learning energy-based prior model with diffusion-amortized M...
收藏 引用
Proceedings of the 37th International Conference on Neural Information Processing Systems
作者: Peiyu Yu Yaxuan Zhu Sirui Xie Xiaojian Ma Ruiqi Gao Song-Chun Zhu Ying Nian Wu UCLA Department of Statistics UCLA Department of Computer Science UCLA Department of Computer Science and Beijing Institute for General Artificial Intelligence (BIGAI) Google DeepMind Beijing Institute for General Artificial Intelligence (BIGAI)
Latent space Energy-Based Models (EBMs), also known as energy-based priors, have drawn growing interests in the field of generative modeling due to its flexibility in the formulation and strong modeling power of the l...
来源: 评论