咨询与建议

限定检索结果

文献类型

  • 171 篇 期刊文献
  • 13 篇 会议

馆藏范围

  • 184 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 134 篇 理学
    • 55 篇 数学
    • 39 篇 物理学
    • 34 篇 生物学
    • 22 篇 统计学(可授理学、...
    • 17 篇 系统科学
    • 12 篇 天文学
    • 10 篇 化学
    • 8 篇 地球物理学
  • 110 篇 工学
    • 47 篇 计算机科学与技术...
    • 33 篇 软件工程
    • 23 篇 生物工程
    • 16 篇 控制科学与工程
    • 12 篇 生物医学工程(可授...
    • 10 篇 核科学与技术
    • 8 篇 材料科学与工程(可...
    • 7 篇 光学工程
    • 6 篇 化学工程与技术
    • 5 篇 力学(可授工学、理...
    • 5 篇 电气工程
    • 5 篇 电子科学与技术(可...
    • 4 篇 动力工程及工程热...
  • 26 篇 管理学
    • 18 篇 管理科学与工程(可...
    • 13 篇 工商管理
    • 6 篇 图书情报与档案管...
  • 24 篇 医学
    • 22 篇 临床医学
    • 17 篇 基础医学(可授医学...
    • 10 篇 药学(可授医学、理...
    • 7 篇 公共卫生与预防医...
  • 6 篇 法学
    • 6 篇 社会学
  • 6 篇 农学
  • 2 篇 经济学

主题

  • 9 篇 gravitational wa...
  • 5 篇 gravitational wa...
  • 4 篇 deep learning
  • 4 篇 gravitational wa...
  • 4 篇 numerical method...
  • 3 篇 partial differen...
  • 3 篇 adversarial mach...
  • 3 篇 photons
  • 3 篇 alternative grav...
  • 2 篇 extrapolation
  • 2 篇 general relativi...
  • 2 篇 regression analy...
  • 2 篇 deep neural netw...
  • 2 篇 quantum algorith...
  • 2 篇 baseball
  • 2 篇 genome-wide asso...
  • 2 篇 finance
  • 2 篇 computational bi...
  • 2 篇 mean square erro...
  • 2 篇 general relativi...

机构

  • 23 篇 graduate group i...
  • 14 篇 graduate group i...
  • 13 篇 department of as...
  • 12 篇 institute for pl...
  • 12 篇 university of so...
  • 12 篇 department of ph...
  • 12 篇 university of ch...
  • 11 篇 infn sezione di ...
  • 11 篇 national tsing h...
  • 11 篇 department of ph...
  • 11 篇 department of ph...
  • 11 篇 department of ph...
  • 11 篇 institute for nu...
  • 11 篇 scuola di ingegn...
  • 11 篇 advanced technol...
  • 11 篇 physik-institut ...
  • 11 篇 king’s college l...
  • 11 篇 department of ph...
  • 11 篇 kamioka branch n...
  • 11 篇 the university o...

作者

  • 18 篇 perdikaris paris
  • 14 篇 wang sifan
  • 11 篇 r. takahashi
  • 11 篇 j. c. bayley
  • 11 篇 t. m. evans
  • 11 篇 k. komori
  • 11 篇 t. kajita
  • 11 篇 f. hellman
  • 11 篇 s. eguchi
  • 11 篇 k. ioka
  • 11 篇 m. kinley-hanlon
  • 11 篇 c. frederick
  • 11 篇 e. j. son
  • 11 篇 l. m. daneshgara...
  • 11 篇 t. tsuzuki
  • 11 篇 t. mcrae
  • 11 篇 a. parisi
  • 11 篇 t. sawada
  • 11 篇 s. rowan
  • 11 篇 s. m. aronson

语言

  • 172 篇 英文
  • 11 篇 其他
  • 1 篇 中文
检索条件"机构=Graduate Group in Applied Math and Computational Science"
184 条 记 录,以下是1-10 订阅
排序:
A dive into spectral inference networks: improved algorithms for self-supervised learning of continuous spectral representations
收藏 引用
applied mathematics and Mechanics(English Edition) 2023年 第7期44卷 1199-1224页
作者: J.WU S.F.WANG P.PERDIKARIS Graduate Group in Applied Mathematics and Computational Science University of Pennsylvania PhiladelphiaPA 19104U.S.A. Department of Mechanical Engineering and Applied Mechanics University of Pennsylvania PhiladelphiaPA 19104U.S.A.
We propose a self-supervising learning framework for finding the dominant eigenfunction-eigenvalue pairs of linear and self-adjoint *** represent target eigenfunctions with coordinate-based neural networks and employ ... 详细信息
来源: 评论
STOCHASTIC CONTROLLED AVERAGING FOR FEDERATED LEARNING WITH COMMUNICATION COMPRESSION  12
STOCHASTIC CONTROLLED AVERAGING FOR FEDERATED LEARNING WITH ...
收藏 引用
12th International Conference on Learning Representations, ICLR 2024
作者: Huang, Xinmeng Li, Ping Li, Xiaoyun LinkedIn BellevueWA98004 United States The Graduate Group of Applied Mathematics and Computational Science The University of Pennsylvania United States
Communication compression has been an important topic in Federated Learning (FL) for alleviating the communication overhead. However, communication compression brings forth new challenges in FL due to the interplay of... 详细信息
来源: 评论
A Theory of Non-Linear Feature Learning with One Gradient Step in Two-Layer Neural Networks  41
A Theory of Non-Linear Feature Learning with One Gradient St...
收藏 引用
41st International Conference on Machine Learning, ICML 2024
作者: Moniri, Behrad Lee, Donghwan Hassani, Hamed Dobriban, Edgar Department of Electrical and Systems Engineering University of Pennsylvania PA United States Graduate Group in Applied Mathematics and Computational Science University of Pennsylvania PA United States Department of Statistics and Data Science University of Pennsylvania PA United States
Feature learning is thought to be one of the fundamental reasons for the success of deep neural networks. It is rigorously known that in two-layer fully-connected neural networks under certain conditions, one step of ... 详细信息
来源: 评论
Stochastic Controlled Averaging for Federated Learning with Communication Compression
arXiv
收藏 引用
arXiv 2023年
作者: Huang, Xinmeng Li, Ping Li, Xiaoyun The Graduate Group of Applied Mathematics and Computational Science The University of Pennsylvania United States
Communication compression, a technique aiming to reduce the information volume to be transmitted over the air, has gained great interest in Federated Learning (FL) for the potential of alleviating its communication ov... 详细信息
来源: 评论
Demystifying Disagreement-on-the-Line in High Dimensions  40
Demystifying Disagreement-on-the-Line in High Dimensions
收藏 引用
40th International Conference on Machine Learning, ICML 2023
作者: Lee, Donghwan Moniri, Behrad Huang, Xinmeng Dobriban, Edgar Hassani, Hamed Graduate Group in Applied Mathematics and Computational Science University of Pennsylvania PA United States Department of Electrical and Systems Engineering University of Pennsylvania PA United States Department of Statistics and Data Science University of Pennsylvania PA United States
Evaluating the performance of machine learning models under distribution shifts is challenging, especially when we only have unlabeled data from the shifted (target) domain, along with labeled data from the original (... 详细信息
来源: 评论
SURREAL-GAN:SEMI-SUPERVISED REPRESENTATION LEARNING VIA GAN FOR UNCOVERING HETEROGENEOUS DISEASE-RELATED IMAGING PATTERNS  10
SURREAL-GAN:SEMI-SUPERVISED REPRESENTATION LEARNING VIA GAN ...
收藏 引用
10th International Conference on Learning Representations, ICLR 2022
作者: Yang, Zhijian Wen, Junhao Davatzikos, Christos Center for Biomedical Image Computing and Analytics University of Pennsylvania United States Graduate Group in Applied Mathematics and Computational Science University of Pennsylvania United States
A plethora of machine learning methods have been applied to imaging data, enabling the construction of clinically relevant imaging signatures of neurological and neuropsychiatric diseases. Oftentimes, such methods do ... 详细信息
来源: 评论
Simultaneous Estimation of Many Sparse Networks via Hierarchical Poisson Log-Normal Model
arXiv
收藏 引用
arXiv 2024年
作者: Ge, Changhao Li, Hongzhe Graduate Group of Applied Mathematics and Computational Science University of Pennsylvania United States Department of Biostatistics Epidemiology and Informatics University of Pennsylvania United States
The advancement of single-cell RNA-sequencing (scRNA-seq) technologies allow us to study the individual level cell-type-specific gene expression networks by direct inference of genes’ conditional independence structu... 详细信息
来源: 评论
The Loser’s Curse and the Critical Role of the Utility Function
arXiv
收藏 引用
arXiv 2024年
作者: Brill, Ryan S. Wyner, Abraham J. Graduate Group in Applied Mathematics and Computational Science University of Pennsylvania United States Dept. of Statistics and Data Science The Wharton School University of Pennsylvania United States
A longstanding question in the judgment and decision making literature is whether experts, even in high-stakes environments, exhibit the same cognitive biases observed in controlled experiments with inexperienced part... 详细信息
来源: 评论
A Variational Spike-and-Slab Approach for group Variable Selection
arXiv
收藏 引用
arXiv 2023年
作者: Lin, Buyu Ge, Changhao Liu, Jun S. Department of Statistics Harvard University United States Graduate Group in Applied Mathematics and Computational Science University of Pennsylvania United States
We introduce a class of generic spike-and-slab priors for high-dimensional linear regression with grouped variables and present a Coordinate-ascent Variational Inference (CAVI) algorithm for obtaining an optimal varia... 详细信息
来源: 评论
A theory of non-linear feature learning with one gradient step in two-layer neural networks  24
A theory of non-linear feature learning with one gradient st...
收藏 引用
Proceedings of the 41st International Conference on Machine Learning
作者: Behrad Moniri Donghwan Lee Hamed Hassani Edgar Dobriban Department of Electrical and Systems Engineering University of Pennsylvania PA Graduate Group in Applied Mathematics and Computational Science University of Pennsylvania PA Department of Statistics and Data Science University of Pennsylvania PA
Feature learning is thought to be one of the fundamental reasons for the success of deep neural networks. It is rigorously known that in two-layer fully-connected neural networks under certain conditions, one step of ...
来源: 评论