咨询与建议

限定检索结果

文献类型

  • 171 篇 期刊文献
  • 13 篇 会议

馆藏范围

  • 184 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 134 篇 理学
    • 55 篇 数学
    • 39 篇 物理学
    • 34 篇 生物学
    • 22 篇 统计学(可授理学、...
    • 17 篇 系统科学
    • 12 篇 天文学
    • 10 篇 化学
    • 8 篇 地球物理学
  • 110 篇 工学
    • 47 篇 计算机科学与技术...
    • 33 篇 软件工程
    • 23 篇 生物工程
    • 16 篇 控制科学与工程
    • 12 篇 生物医学工程(可授...
    • 10 篇 核科学与技术
    • 8 篇 材料科学与工程(可...
    • 7 篇 光学工程
    • 6 篇 化学工程与技术
    • 5 篇 力学(可授工学、理...
    • 5 篇 电气工程
    • 5 篇 电子科学与技术(可...
    • 4 篇 动力工程及工程热...
  • 26 篇 管理学
    • 18 篇 管理科学与工程(可...
    • 13 篇 工商管理
    • 6 篇 图书情报与档案管...
  • 24 篇 医学
    • 22 篇 临床医学
    • 17 篇 基础医学(可授医学...
    • 10 篇 药学(可授医学、理...
    • 7 篇 公共卫生与预防医...
  • 6 篇 法学
    • 6 篇 社会学
  • 6 篇 农学
  • 2 篇 经济学

主题

  • 9 篇 gravitational wa...
  • 5 篇 gravitational wa...
  • 4 篇 deep learning
  • 4 篇 gravitational wa...
  • 4 篇 numerical method...
  • 3 篇 partial differen...
  • 3 篇 adversarial mach...
  • 3 篇 photons
  • 3 篇 alternative grav...
  • 2 篇 extrapolation
  • 2 篇 general relativi...
  • 2 篇 regression analy...
  • 2 篇 deep neural netw...
  • 2 篇 quantum algorith...
  • 2 篇 baseball
  • 2 篇 genome-wide asso...
  • 2 篇 finance
  • 2 篇 computational bi...
  • 2 篇 mean square erro...
  • 2 篇 general relativi...

机构

  • 23 篇 graduate group i...
  • 14 篇 graduate group i...
  • 13 篇 department of as...
  • 12 篇 institute for pl...
  • 12 篇 university of so...
  • 12 篇 department of ph...
  • 12 篇 university of ch...
  • 11 篇 infn sezione di ...
  • 11 篇 national tsing h...
  • 11 篇 department of ph...
  • 11 篇 department of ph...
  • 11 篇 department of ph...
  • 11 篇 institute for nu...
  • 11 篇 scuola di ingegn...
  • 11 篇 advanced technol...
  • 11 篇 physik-institut ...
  • 11 篇 king’s college l...
  • 11 篇 department of ph...
  • 11 篇 kamioka branch n...
  • 11 篇 the university o...

作者

  • 18 篇 perdikaris paris
  • 14 篇 wang sifan
  • 11 篇 r. takahashi
  • 11 篇 j. c. bayley
  • 11 篇 t. m. evans
  • 11 篇 k. komori
  • 11 篇 t. kajita
  • 11 篇 f. hellman
  • 11 篇 s. eguchi
  • 11 篇 k. ioka
  • 11 篇 m. kinley-hanlon
  • 11 篇 c. frederick
  • 11 篇 e. j. son
  • 11 篇 l. m. daneshgara...
  • 11 篇 t. tsuzuki
  • 11 篇 t. mcrae
  • 11 篇 a. parisi
  • 11 篇 t. sawada
  • 11 篇 s. rowan
  • 11 篇 s. m. aronson

语言

  • 172 篇 英文
  • 11 篇 其他
  • 1 篇 中文
检索条件"机构=Graduate Group in Applied Math and Computational Science"
184 条 记 录,以下是41-50 订阅
排序:
Introducing Grid WAR: Rethinking WAR for Starting Pitchers
arXiv
收藏 引用
arXiv 2022年
作者: Brill, Ryan S. Wyner, Abraham J. Graduate Group in Applied Mathematics and Computational Science University of Pennsylvania United States Dept. of Statistics and Data Science The Wharton School University of Pennsylvania United States
The baseball statistic "Wins Above Replacement" (WAR) has emerged as one of the most popular evaluation metrics. But it is not readily observed and tabulated;WAR is an estimate of a parameter in a vaguely de... 详细信息
来源: 评论
Federated scientific machine learning for approximating functions and solving differential equations with data heterogeneity
arXiv
收藏 引用
arXiv 2024年
作者: Zhang, Handi Liu, Langchen Lu, Lu Graduate Group in Applied Mathematics and Computational Science University of Pennsylvania PhiladelphiaPA19104 United States Department of Statistics and Data Science Yale University New HavenCT06511 United States Wu Tsai Institute Yale University New HavenCT06510 United States
By leveraging neural networks, the emerging field of scientific machine learning (SciML) offers novel approaches to address complex problems governed by partial differential equations (PDEs). In practical applications... 详细信息
来源: 评论
SURREAL-GAN:SEMI-SUPERVISED REPRESENTATION LEARNING VIA GAN FOR UNCOVERING HETEROGENEOUS DISEASE-RELATED IMAGING PATTERNS
arXiv
收藏 引用
arXiv 2022年
作者: Yang, Zhijian Wen, Junhao Davatzikos, Christos Center for Biomedical Image Computing and Analytics University of Pennsylvania United States Graduate Group in Applied Mathematics and Computational Science University of Pennsylvania United States
A plethora of machine learning methods have been applied to imaging data, enabling the construction of clinically relevant imaging signatures of neurological and neuropsychiatric diseases. Oftentimes, such methods do ... 详细信息
来源: 评论
Broadband coplanar-waveguide-based impedance-transformed Josephson parametric amplifier
收藏 引用
Physical Review Research 2024年 第1期6卷 L012035-L012035页
作者: Bingcheng Qing Long B. Nguyen Xinyu Liu Hengjiang Ren William P. Livingston Noah Goss Ahmed Hajr Trevor Chistolini Zahra Pedramrazi David I. Santiago Jie Luo Irfan Siddiqi Department of Physics University of California Berkeley California 94720 USA Computational Research Division Lawrence Berkeley National Laboratory Berkeley California 94720 USA Anyon Computing Inc. Emeryville California 94662 USA Graduate Group in Applied Science and Technology University of California at Berkeley Berkeley California 94720 USA
Quantum-limited Josephson parametric amplifiers play a pivotal role in advancing the field of circuit quantum electrodynamics by enabling the fast and high-fidelity measurement of weak microwave signals. Therefore, it... 详细信息
来源: 评论
RESPECTING CAUSALITY IS ALL YOU NEED FOR TRAINING PHYSICS-INFORMED NEURAL NETWORKS
arXiv
收藏 引用
arXiv 2022年
作者: Wang, Sifan Sankaran, Shyam Perdikaris, Paris Graduate Group In Applied Mathematics And Computational Science University Of Pennsylvania PhiladelphiaPA19104 United States Department Of Mechanical Engineering And Applied Mechanics University Of Pennsylvania PhiladelphiaPA19104 United States
While the popularity of physics-informed neural networks (PINNs) is steadily rising, to this date PINNs have not been successful in simulating dynamical systems whose solution exhibits multi-scale, chaotic or turbulen... 详细信息
来源: 评论
Risk-aware stochastic control of a sailboat
arXiv
收藏 引用
arXiv 2023年
作者: Wang, MingYi Patnaik, Natasha Somalwar, Anne Wu, Jingyi Vladimirsky, Alexander The Center for Applied Mathematics Cornell University IthacaNY14853 United States The Department of Computational Applied Mathematics and Operations Research Rice University HoustonTX77005 United States The graduate group in Applied Mathematics and Computational Science University of Pennsylvania PhiladelphiaPA19104 United States The Center for Data Science New York University New York CityNY10012 United States The Department of Mathematics Cornell University IthacaNY14853 United States
Sailboat path-planning is a natural hybrid control problem (due to continuous steering and occasional "tack-switching" maneuvers), with the actual path-to-target greatly affected by stochastically evolving w... 详细信息
来源: 评论
Collaborative learning of discrete distributions under heterogeneity and communication constraints  22
Collaborative learning of discrete distributions under heter...
收藏 引用
Proceedings of the 36th International Conference on Neural Information Processing Systems
作者: Xinmeng Huang Donghwan Lee Edgar Dobriban Hamed Hassani Graduate Group in Applied Mathematics and Computational Science University of Pennsylvania Philadelphia PA Department of Statistics and Data Science University of Pennsylvania Philadelphia PA Department of Electrical and Systems Engineering University of Pennsylvania Philadelphia PA
In modern machine learning, users often have to collaborate to learn distributions that generate the data. Communication can be a significant bottleneck. Prior work has studied homogeneous users—i.e., whose data foll...
来源: 评论
Optimal Multitask Linear Regression and Contextual Bandits under Sparse Heterogeneity
arXiv
收藏 引用
arXiv 2023年
作者: Huang, Xinmeng Xu, Kan Lee, Donghwan Hassani, Hamed Bastani, Hamsa Dobriban, Edgar Graduate Group in Applied Math and Computational Science Univ. of Pennsylvania United States Department of Information Systems Arizona State University United States Department of Electrical and Systems Engineering Univ. of Pennsylvania United States Department of Operations Information and Decisions Univ. of Pennsylvania United States Department of Statistics and Data Science Univ. of Pennsylvania United States
Large and complex datasets are often collected from several, possibly heterogeneous sources. Multitask learning methods improve efficiency by leveraging commonalities across datasets while accounting for possible diff... 详细信息
来源: 评论
PIRATENETS: PHYSICS-INFORMED DEEP LEARNING WITH RESIDUAL ADAPTIVE NETWORKS
arXiv
收藏 引用
arXiv 2024年
作者: Wang, Sifan Li, Bowen Perdikaris, Paris Chen, Yuhan Graduate Group in Applied Mathematics and Computational Science University of Pennsylvania PhiladelphiaPA19104 United States Department of Mathematics Duke University DurhamNC27708 United States Department of Mechanical Engineering and Applied Mechanics University of Pennsylvania PhiladelphiaPA19104 United States Department of Electrical and Computer Engineering North Carolina State University RaleighNC27695 United States
While physics-informed neural networks (PINNs) have become a popular deep learning framework for tackling forward and inverse problems governed by partial differential equations (PDEs), their performance is known to d... 详细信息
来源: 评论
A Bayesian analysis of the time through the order penalty in baseball
arXiv
收藏 引用
arXiv 2022年
作者: Brill, Ryan S. Deshpande, Sameer K. Wyner, Abraham J. Graduate Group in Applied Mathematics and Computational Science University of Pennsylvania United States Dept. of Statistics University of Wisconsin-Madison United States Dept. of Statistics and Data Science The Wharton School University of Pennsylvania United States
As a baseball game progresses, batters appear to perform better the more times they face a particular pitcher. The apparent drop-off in pitcher performance from one time through the order to the next, known as the Tim... 详细信息
来源: 评论