咨询与建议

限定检索结果

文献类型

  • 171 篇 期刊文献
  • 13 篇 会议

馆藏范围

  • 184 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 134 篇 理学
    • 55 篇 数学
    • 39 篇 物理学
    • 34 篇 生物学
    • 22 篇 统计学(可授理学、...
    • 17 篇 系统科学
    • 12 篇 天文学
    • 10 篇 化学
    • 8 篇 地球物理学
  • 110 篇 工学
    • 47 篇 计算机科学与技术...
    • 33 篇 软件工程
    • 23 篇 生物工程
    • 16 篇 控制科学与工程
    • 12 篇 生物医学工程(可授...
    • 10 篇 核科学与技术
    • 8 篇 材料科学与工程(可...
    • 7 篇 光学工程
    • 6 篇 化学工程与技术
    • 5 篇 力学(可授工学、理...
    • 5 篇 电气工程
    • 5 篇 电子科学与技术(可...
    • 4 篇 动力工程及工程热...
  • 26 篇 管理学
    • 18 篇 管理科学与工程(可...
    • 13 篇 工商管理
    • 6 篇 图书情报与档案管...
  • 24 篇 医学
    • 22 篇 临床医学
    • 17 篇 基础医学(可授医学...
    • 10 篇 药学(可授医学、理...
    • 7 篇 公共卫生与预防医...
  • 6 篇 法学
    • 6 篇 社会学
  • 6 篇 农学
  • 2 篇 经济学

主题

  • 9 篇 gravitational wa...
  • 5 篇 gravitational wa...
  • 4 篇 deep learning
  • 4 篇 gravitational wa...
  • 4 篇 numerical method...
  • 3 篇 partial differen...
  • 3 篇 adversarial mach...
  • 3 篇 photons
  • 3 篇 alternative grav...
  • 2 篇 extrapolation
  • 2 篇 general relativi...
  • 2 篇 regression analy...
  • 2 篇 deep neural netw...
  • 2 篇 quantum algorith...
  • 2 篇 baseball
  • 2 篇 genome-wide asso...
  • 2 篇 finance
  • 2 篇 computational bi...
  • 2 篇 mean square erro...
  • 2 篇 general relativi...

机构

  • 23 篇 graduate group i...
  • 14 篇 graduate group i...
  • 13 篇 department of as...
  • 12 篇 institute for pl...
  • 12 篇 university of so...
  • 12 篇 department of ph...
  • 12 篇 university of ch...
  • 11 篇 infn sezione di ...
  • 11 篇 national tsing h...
  • 11 篇 department of ph...
  • 11 篇 department of ph...
  • 11 篇 department of ph...
  • 11 篇 institute for nu...
  • 11 篇 scuola di ingegn...
  • 11 篇 advanced technol...
  • 11 篇 physik-institut ...
  • 11 篇 king’s college l...
  • 11 篇 department of ph...
  • 11 篇 kamioka branch n...
  • 11 篇 the university o...

作者

  • 18 篇 perdikaris paris
  • 14 篇 wang sifan
  • 11 篇 r. takahashi
  • 11 篇 j. c. bayley
  • 11 篇 t. m. evans
  • 11 篇 k. komori
  • 11 篇 t. kajita
  • 11 篇 f. hellman
  • 11 篇 s. eguchi
  • 11 篇 k. ioka
  • 11 篇 m. kinley-hanlon
  • 11 篇 c. frederick
  • 11 篇 e. j. son
  • 11 篇 l. m. daneshgara...
  • 11 篇 t. tsuzuki
  • 11 篇 t. mcrae
  • 11 篇 a. parisi
  • 11 篇 t. sawada
  • 11 篇 s. rowan
  • 11 篇 s. m. aronson

语言

  • 172 篇 英文
  • 11 篇 其他
  • 1 篇 中文
检索条件"机构=Graduate Group in Applied Math and Computational Science"
184 条 记 录,以下是51-60 订阅
排序:
T-Cal: An optimal test for the calibration of predictive models
arXiv
收藏 引用
arXiv 2022年
作者: Lee, Donghwan Huang, Xinmeng Hassani, Hamed Dobriban, Edgar Graduate Group in Applied Mathematics and Computational Science Univ. of Pennsylvania United States Department of Electrical and Systems Engineering Univ. of Pennsylvania United States Department of Statistics and Data Science Univ. of Pennsylvania United States
The prediction accuracy of machine learning methods is steadily increasing, but the calibration of their uncertainty predictions poses a significant challenge. Numerous works focus on obtaining well-calibrated predict... 详细信息
来源: 评论
Collaborative Learning of Discrete Distributions under Heterogeneity and Communication Constraints
arXiv
收藏 引用
arXiv 2022年
作者: Huang, Xinmeng Lee, Donghwan Dobriban, Edgar Hassani, Hamed Graduate Group in Applied Mathematics and Computational Science Univ. of Pennsylvania United States Department of Statistics and Data Science Univ. of Pennsylvania United States Department of Electrical and Systems Engineering Univ. of Pennsylvania United States
In modern machine learning, users often have to collaborate to learn the distribution of the data. Communication can be a significant bottleneck. Prior work has studied homogeneous users-i.e., whose data follow the sa... 详细信息
来源: 评论
在天文学中基于机器学习的流体力学问题加速求解
在天文学中基于机器学习的流体力学问题加速求解
收藏 引用
第十三届全国流体力学学术会议
作者: 毛顺元 董若冰 王炜琦 Kwang Moo Yi 陆路 王思凡 Paris Perdikaris Department of Physics and Astronomy University of Victoria Department of Computer Science University of British Columbia Department of Statistics and Data Science Yale University Graduate Group in Applied Mathematics and Computational Science University of Pennsylvania Department ofMechanical Engineering and Applied Mechanics University of Pennsylvania
探索行星形成的过程不仅揭示了地球及其生命的起源,还为寻找地外生命提供了关键线索。行星在原行星盘中形成。原行星盘是由气体和尘埃构成的扁平盘状系统,围绕在新生恒星的周围,其跨度可达数千亿公里。近年来,通过分析行星对原行星盘的... 详细信息
来源: 评论
One-shot distributed ridge regression in high dimensions  37
One-shot distributed ridge regression in high dimensions
收藏 引用
37th International Conference on Machine Learning, ICML 2020
作者: Dobriban, Edgar Sheng, Yue Wharton Statistics Department University of Pennsylvania PhiladelphiaPA United States Graduate Group in Applied Mathematics and Computational Science University of Pennsylvania PhiladelphiaPA United States
To scale up data analysis, distributed and parallel computing approaches are increasingly needed. Here we study a fundamental problem in this area: How to do ridge regression in a distributed computing environment? We... 详细信息
来源: 评论
Learning operators with coupled attention
arXiv
收藏 引用
arXiv 2022年
作者: Kissas, Georgios Seidman, Jacob Guilhoto, Leonardo Ferreira Preciado, Victor M. Pappas, George J. Perdikaris, Paris Department of Mechanical Engineering and Applied Mechanics University of Pennsylvania PhiladelphiaPA19104 United States Graduate Group in Applied Mathematics and Computational Science University of Pennsylvania PhiladelphiaPA19104 United States Department of Electrical and Systems Engineering University of Pennsylvania PhiladelphiaPA19104 United States
Supervised operator learning is an emerging machine learning paradigm with applications to modeling the evolution of spatio-temporal dynamical systems and approximating general black-box relationships between function... 详细信息
来源: 评论
Reliable Extrapolation of Deep Neural Operators Informed by Physics or Sparse Observations
SSRN
收藏 引用
SSRN 2023年
作者: Zhu, Min Zhang, Handi Jiao, Anran Karniadakis, George Em Lu, Lu Department of Chemical and Biomolecular Engineering University of Pennsylvania PhiladelphiaPA19104 United States Graduate Group in Applied Mathematics and Computational Science University of Pennsylvania PhiladelphiaPA19104 United States Department of Computer and Information Science University of Pennsylvania PhiladelphiaPA19104 United States Division of Applied Mathematics Brown University ProvidenceRI02912 United States School of Engineering Brown University ProvidenceRI02912 United States
Deep neural operators can learn nonlinear mappings between infinite-dimensional function spaces via deep neural networks. As promising surrogate solvers of partial differential equations (PDEs) for real-time predictio... 详细信息
来源: 评论
Learning the solution operator of parametric partial differential equations with physics-informed deeponets
arXiv
收藏 引用
arXiv 2021年
作者: Wang, Sifan Wang, Hanwen Perdikaris, Paris Graduate Group in Applied Mathematics and Computational Science University of Pennsylvania PhiladelphiaPA19104 United States Department of Mechanichal Engineering and Applied Mechanics University of Pennsylvania PhiladelphiaPA19104 United States
Deep operator networks (DeepONets) are receiving increased attention thanks to their demonstrated capability to approximate nonlinear operators between infinite-dimensional Banach spaces. However, despite their remark... 详细信息
来源: 评论
Long-time integration of parametric evolution equations with physics-informed deeponets
arXiv
收藏 引用
arXiv 2021年
作者: Wang, Sifan Perdikaris, Paris Graduate Group in Applied Mathematics and Computational Science University of Pennsylvania PhiladelphiaPA19104 United States Department of Mechanichal Engineering and Applied Mechanics University of Pennsylvania PhiladelphiaPA19104 United States
Ordinary and partial differential equations (ODEs/PDEs) play a paramount role in analyzing and simulating complex dynamic processes across all corners of science and engineering. In recent years machine learning tools... 详细信息
来源: 评论
Fast PDE-constrained optimization via self-supervised operator learning: A preprint
arXiv
收藏 引用
arXiv 2021年
作者: Wang, Sifan Bhouri, Mohamed Aziz Perdikaris, Paris Graduate Group in Applied Mathematics and Computational Science University of Pennsylvania PhiladelphiaPA19104 United States Department of Mechanichal Engineering and Applied Mechanics University of Pennsylvania PhiladelphiaPA19104 United States
Design and optimal control problems are among the fundamental, ubiquitous tasks we face in science and engineering. In both cases, we aim to represent and optimize an unknown (black-box) function that associates a per... 详细信息
来源: 评论
Which Activation Function Works Best for Training Artificial Pancreas: Empirical Fact and Its Theoretical Explanation
Which Activation Function Works Best for Training Artificial...
收藏 引用
2023 IEEE Symposium Series on computational Intelligence, SSCI 2023
作者: Denes-Fazakas, Lehel Szilagyi, Laszlo Eigner, Gyorgy Kosheleva, Olga Ceberio, Martine Kreinovich, Vladik Doctoral School Óbuda University Physiological Controls Research Center Appl. Informatics & Appl. Math. Budapest Hungary Sapientia University Computational Intelligence Res. Group Tg. Mures Romania Physiological Controls Res. Center Óbuda University Budapest Hungary Biomatics and Applied Ai Institute Obuda University Physiological Controls Res. Center John von Neumann Faculty of Informatics Budapest Hungary University of Texas at El Paso Department of Teacher Education El PasoTX United States University of Texas at El Paso Department of Computer Science El PasoTX United States
One of the most effective ways to help patients at the dangerous levels of diabetes is an artificial pancreas, a device that constantly monitors the patient's blood sugar level and injects insulin based on this le... 详细信息
来源: 评论