咨询与建议

限定检索结果

文献类型

  • 171 篇 期刊文献
  • 13 篇 会议

馆藏范围

  • 184 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 134 篇 理学
    • 55 篇 数学
    • 39 篇 物理学
    • 34 篇 生物学
    • 22 篇 统计学(可授理学、...
    • 17 篇 系统科学
    • 12 篇 天文学
    • 10 篇 化学
    • 8 篇 地球物理学
  • 110 篇 工学
    • 47 篇 计算机科学与技术...
    • 33 篇 软件工程
    • 23 篇 生物工程
    • 16 篇 控制科学与工程
    • 12 篇 生物医学工程(可授...
    • 10 篇 核科学与技术
    • 8 篇 材料科学与工程(可...
    • 7 篇 光学工程
    • 6 篇 化学工程与技术
    • 5 篇 力学(可授工学、理...
    • 5 篇 电气工程
    • 5 篇 电子科学与技术(可...
    • 4 篇 动力工程及工程热...
  • 26 篇 管理学
    • 18 篇 管理科学与工程(可...
    • 13 篇 工商管理
    • 6 篇 图书情报与档案管...
  • 24 篇 医学
    • 22 篇 临床医学
    • 17 篇 基础医学(可授医学...
    • 10 篇 药学(可授医学、理...
    • 7 篇 公共卫生与预防医...
  • 6 篇 法学
    • 6 篇 社会学
  • 6 篇 农学
  • 2 篇 经济学

主题

  • 9 篇 gravitational wa...
  • 5 篇 gravitational wa...
  • 4 篇 deep learning
  • 4 篇 gravitational wa...
  • 4 篇 numerical method...
  • 3 篇 partial differen...
  • 3 篇 adversarial mach...
  • 3 篇 photons
  • 3 篇 alternative grav...
  • 2 篇 extrapolation
  • 2 篇 general relativi...
  • 2 篇 regression analy...
  • 2 篇 deep neural netw...
  • 2 篇 quantum algorith...
  • 2 篇 baseball
  • 2 篇 genome-wide asso...
  • 2 篇 finance
  • 2 篇 computational bi...
  • 2 篇 mean square erro...
  • 2 篇 general relativi...

机构

  • 23 篇 graduate group i...
  • 14 篇 graduate group i...
  • 13 篇 department of as...
  • 12 篇 institute for pl...
  • 12 篇 university of so...
  • 12 篇 department of ph...
  • 12 篇 university of ch...
  • 11 篇 infn sezione di ...
  • 11 篇 national tsing h...
  • 11 篇 department of ph...
  • 11 篇 department of ph...
  • 11 篇 department of ph...
  • 11 篇 institute for nu...
  • 11 篇 scuola di ingegn...
  • 11 篇 advanced technol...
  • 11 篇 physik-institut ...
  • 11 篇 king’s college l...
  • 11 篇 department of ph...
  • 11 篇 kamioka branch n...
  • 11 篇 the university o...

作者

  • 18 篇 perdikaris paris
  • 14 篇 wang sifan
  • 11 篇 r. takahashi
  • 11 篇 j. c. bayley
  • 11 篇 t. m. evans
  • 11 篇 k. komori
  • 11 篇 t. kajita
  • 11 篇 f. hellman
  • 11 篇 s. eguchi
  • 11 篇 k. ioka
  • 11 篇 m. kinley-hanlon
  • 11 篇 c. frederick
  • 11 篇 e. j. son
  • 11 篇 l. m. daneshgara...
  • 11 篇 t. tsuzuki
  • 11 篇 t. mcrae
  • 11 篇 a. parisi
  • 11 篇 t. sawada
  • 11 篇 s. rowan
  • 11 篇 s. m. aronson

语言

  • 172 篇 英文
  • 11 篇 其他
  • 1 篇 中文
检索条件"机构=Graduate Group of Applied Math and Computational Science"
184 条 记 录,以下是21-30 订阅
排序:
Understanding the Influence of Digraphs on Decentralized Optimization: Effective Metrics, Lower Bound, and Optimal Algorithm
arXiv
收藏 引用
arXiv 2023年
作者: Liang, Liyuan Huang, Xinmeng Xin, Ran Yuan, Kun School of Mathematics Science Peking University China Graduate Group in Applied Mathematics and Computational Science University of Pennsylvania United States ByteDance Applied Machine Learning China Center for Machine Learning Research Peking University China
This paper investigates the influence of directed networks on decentralized stochastic non-convex optimization associated with column-stochastic mixing matrices. Surprisingly, we find that the canonical spectral gap, ... 详细信息
来源: 评论
A statistical mechanics framework for constructing non-equilibrium thermodynamic models
arXiv
收藏 引用
arXiv 2023年
作者: Leadbetter, Travis Purohit, Prashant K. Reina, Celia Graduate Group in Applied Mathematics and Computational Science University of Pennsylvania PhiladelphiaPA19104 United States Department of Mechanical Engineering and Applied Mechanics University of Pennsylvania PhiladelphiaPA19104 United States
Far-from-equilibrium phenomena are critical to all natural and engineered systems, and essential to biological processes responsible for life. For over a century and a half, since Carnot, Clausius, Maxwell, Boltzmann,... 详细信息
来源: 评论
LEARNING ONLY ON BOUNDARIES: A PHYSICS-INFORMED NEURAL OPERATOR FOR SOLVING PARAMETRIC PARTIAL DIFFERENTIAL EQUATIONS IN COMPLEX GEOMETRIES
arXiv
收藏 引用
arXiv 2023年
作者: Fang, Zhiwei Wang, Sifan Perdikaris, Paris Graduate Group in Applied Mathematics Computational Science University of Pennsylvania PhiladelphiaPA19104 United States Department of Mechanichal Engineering Applied Mechanics University of Pennsylvania PhiladelphiaPA19104 United States
Recently deep learning surrogates and neural operators have shown promise in solving partial differential equations (PDEs). However, they often require a large amount of training data and are limited to bounded domain... 详细信息
来源: 评论
ENSEMBLE LEARNING FOR PHYSICS INFORMED NEURAL NETWORKS: A GRADIENT BOOSTING APPROACH
arXiv
收藏 引用
arXiv 2023年
作者: Fang, Zhiwei Wang, Sifan Perdikaris, Paris Graduate Group in Applied Mathematics and Computational Science University of Pennsylvania PhiladelphiaPA19104 United States Department of Mechanichal Engineering and Applied Mechanics University of Pennsylvania PhiladelphiaPA19104 United States
While the popularity of physics-informed neural networks (PINNs) is steadily rising, to this date, conventional PINNs have not been successful in simulating multi-scale and singular perturbation problems. In this work... 详细信息
来源: 评论
An Expert's Guide to Training Physics-informed Neural Networks
arXiv
收藏 引用
arXiv 2023年
作者: Wang, Sifan Wang, Hanwen Sankaran, Shyam Perdikaris, Paris Graduate Group in Applied Mathematics and Computational Science University of Pennsylvania PhiladelphiaPA19104 United States Department of Mechanical Engineering and Applied Mechanics University of Pennsylvania PhiladelphiaPA19104 United States
Physics-informed neural networks (PINNs) have been popularized as a deep learning framework that can seamlessly synthesize observational data and partial differential equation (PDE) constraints. Their practical effect... 详细信息
来源: 评论
Moving from Machine Learning to Statistics: the case of Expected Points in American football
arXiv
收藏 引用
arXiv 2024年
作者: Brill, Ryan S. Yee, Ryan Deshpande, Sameer K. Wyner, Abraham J. Graduate Group in Applied Mathematics and Computational Science University of Pennsylvania United States Dept. of Statistics University of Wisconsin–Madison United States Dept. of Statistics and Data Science The Wharton School University of Pennsylvania United States
Expected points is a value function fundamental to player evaluation and strategic in-game decision-making across sports analytics, particularly in American football. To estimate expected points, football analysts use... 详细信息
来源: 评论
Risk-Aware Stochastic Control of a Sailboat
Risk-Aware Stochastic Control of a Sailboat
收藏 引用
American Control Conference (ACC)
作者: MingYi Wang Natasha Patnaik Anne Somalwar Jingyi Wu Alexander Vladimirsky The Center for Applied Mathematics Cornell University Ithaca NY USA The Department of Computational Applied Mathematics and Operations Research Rice University Houston TX USA The graduate group in Applied Mathematics and Computational Science University of Pennsylvania Philadelphia PA USA The Center for Data Science New York University New York City NY USA Department of Mathematics Cornell University Ithaca NY USA
Sailboat path-planning is a natural hybrid control problem (due to continuous steering and occasional “tack-switching” maneuvers), with the actual path-to-target greatly affected by stochastically evolving wind cond... 详细信息
来源: 评论
Removing data heterogeneity influence enhances network topology dependence of decentralized SGD
The Journal of Machine Learning Research
收藏 引用
The Journal of Machine Learning Research 2023年 第1期24卷 13275-13327页
作者: Kun Yuan Sulaiman A. Alghunaim Xinmeng Huang Center for Machine Learning Research Peking University AI for Science Institute Beijing P. R. China Department of Electrical Engineering Kuwait University Safat Kuwait Graduate Group in Applied Mathematics and Computational Science University of Pennsylvania Philadelphia PA
We consider decentralized stochastic optimization problems, where a network of n nodes cooperates to find a minimizer of the globally-averaged cost. A widely studied decentralized algorithm for this problem is the dec... 详细信息
来源: 评论
SCALABLE BAYESIAN OPTIMIZATION WITH HIGH-DIMENSIONAL OUTPUTS USING RANDOMIZED PRIOR NETWORKS
arXiv
收藏 引用
arXiv 2023年
作者: Bhouri, Mohamed Aziz Joly, Michael Yu, Robert Sarkar, Soumalya Perdikaris, Paris Department of Mechanical Engineering and Applied Mechanics University of Pennsylvania PhiladelphiaPA19104 United States Raytheon Technologies Graduate Group in Applied Mathematics and Computational Science University of Pennsylvania PhiladelphiaPA19104 United States
Several fundamental problems in science and engineering consist of global optimization tasks involving unknown high-dimensional (black-box) functions that map a set of controllable variables to the outcomes of an expe... 详细信息
来源: 评论
A Theory of Non-Linear Feature Learning with One Gradient Step in Two-Layer Neural Networks
arXiv
收藏 引用
arXiv 2023年
作者: Moniri, Behrad Lee, Donghwan Hassani, Hamed Dobriban, Edgar Department of Electrical and Systems Engineering University of Pennsylvania United States Graduate Group in Applied Mathematics and Computational Science University of Pennsylvania United States Department of Statistics and Data Science University of Pennsylvania United States
Feature learning is thought to be one of the fundamental reasons for the success of deep neural networks. It is rigorously known that in two-layer fully-connected neural networks under certain conditions, one step of ... 详细信息
来源: 评论