咨询与建议

限定检索结果

文献类型

  • 838 篇 期刊文献
  • 75 篇 会议
  • 2 册 图书

馆藏范围

  • 915 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 740 篇 理学
    • 423 篇 物理学
    • 290 篇 数学
    • 143 篇 统计学(可授理学、...
    • 114 篇 生物学
    • 101 篇 化学
    • 54 篇 系统科学
    • 49 篇 地球物理学
    • 25 篇 天文学
  • 523 篇 工学
    • 172 篇 计算机科学与技术...
    • 127 篇 软件工程
    • 94 篇 材料科学与工程(可...
    • 89 篇 电子科学与技术(可...
    • 74 篇 生物工程
    • 73 篇 电气工程
    • 71 篇 化学工程与技术
    • 66 篇 力学(可授工学、理...
    • 56 篇 控制科学与工程
    • 54 篇 光学工程
    • 54 篇 动力工程及工程热...
    • 48 篇 生物医学工程(可授...
    • 35 篇 信息与通信工程
    • 26 篇 仪器科学与技术
    • 25 篇 核科学与技术
  • 68 篇 管理学
    • 38 篇 管理科学与工程(可...
    • 26 篇 图书情报与档案管...
    • 24 篇 工商管理
  • 47 篇 医学
    • 38 篇 临床医学
    • 35 篇 基础医学(可授医学...
    • 20 篇 药学(可授医学、理...
    • 18 篇 公共卫生与预防医...
  • 20 篇 农学
  • 14 篇 法学
  • 7 篇 经济学
  • 2 篇 教育学
  • 1 篇 军事学

主题

  • 22 篇 molecular dynami...
  • 15 篇 machine learning
  • 13 篇 density function...
  • 11 篇 inverse problems
  • 11 篇 microstructure
  • 11 篇 gravitational wa...
  • 11 篇 classical statis...
  • 9 篇 galaxies
  • 9 篇 deep neural netw...
  • 9 篇 monte carlo meth...
  • 8 篇 jamming
  • 8 篇 mean square erro...
  • 7 篇 deep learning
  • 7 篇 first-principles...
  • 7 篇 diffusion
  • 7 篇 gravitational wa...
  • 7 篇 atomic & molecul...
  • 6 篇 ground state
  • 6 篇 sphere packings
  • 6 篇 electronic struc...

机构

  • 53 篇 program in appli...
  • 48 篇 department of ch...
  • 45 篇 program in appli...
  • 35 篇 graduate school ...
  • 31 篇 institute of app...
  • 30 篇 department of ph...
  • 28 篇 department of ch...
  • 24 篇 department of ph...
  • 22 篇 graduate group i...
  • 22 篇 princeton instit...
  • 20 篇 graduate school ...
  • 18 篇 university of ma...
  • 18 篇 institute for pl...
  • 18 篇 university of so...
  • 16 篇 department of as...
  • 16 篇 scuola di ingegn...
  • 16 篇 king’s college l...
  • 16 篇 the university o...
  • 16 篇 infn sezione di ...
  • 16 篇 dipartimento di ...

作者

  • 63 篇 salvatore torqua...
  • 31 篇 torquato salvato...
  • 29 篇 zhang linfeng
  • 26 篇 weinan e.
  • 21 篇 s. torquato
  • 20 篇 jasra ajay
  • 19 篇 perdikaris paris
  • 18 篇 c. kim
  • 18 篇 wang han
  • 17 篇 g. moreno
  • 17 篇 r. gray
  • 17 篇 car roberto
  • 17 篇 frank h. stillin...
  • 16 篇 r. takahashi
  • 16 篇 j. c. bayley
  • 16 篇 k. komori
  • 16 篇 t. kajita
  • 16 篇 f. hellman
  • 16 篇 m. kinley-hanlon
  • 16 篇 t. mcrae

语言

  • 879 篇 英文
  • 29 篇 其他
  • 7 篇 中文
  • 2 篇 德文
  • 2 篇 法文
检索条件"机构=Graduate Program in Applied Mathematics and Computational Science"
915 条 记 录,以下是181-190 订阅
排序:
Empowering Optimal Control with Machine Learning: A Perspective from Model Predictive Control
收藏 引用
IFAC-PapersOnLine 2022年 第30期55卷 121-126页
作者: E Weinan Jiequn Han Jihao Long AI for Science Institute Beijing Center for Machine Learning Research and School of Mathematical Sciences Peking University Beijing China Center for Computational Mathematics Flatiron Institute New York 10010 USA Program of Applied and Computational Mathematics Princeton University Princeton 08544 USA
Solving complex optimal control problems have confronted computational challenges for a long time. Recent advances in machine learning have provided us with new opportunities to address these challenges. This paper ta... 详细信息
来源: 评论
Smooth graph signal interpolation for big data
arXiv
收藏 引用
arXiv 2018年
作者: Heimowitz, Ayelet Eldar, Yonina C. Program in Applied and Computational Mathematics Princeton University PrincetonNJ United States Faculty of Math and Computer Science Weizmann Institute of Science Rehovot Israel
In this paper we present the Markov variation, a smoothness measure which offers a probabilistic interpretation of graph signal smoothness. This measure is then used to develop an optimization framework for graph sign... 详细信息
来源: 评论
An efficient bidiagonalization algorithm for combined CPU-accelerator environments
An efficient bidiagonalization algorithm for combined CPU-ac...
收藏 引用
IASTED International Conference on Parallel and Distributed Computing and Networks, PDCN 2009
作者: Yamamoto, Yusaku Fukaya, Takeshi Uneyama, Takashi Nakamura, Yoshimasa Dept. of Computational Science and Engineering Graduate School of Engineering Nagoya University Nagoya 464-8603 Japan Division of Multidisciplinary Chemistry Institute for Chemical Research Kyoto University Kyoto 611-0011 Japan Dept. of Applied Mathematics and Physics Graduate School of Informatics Kyoto University/JST SORST Kyoto 606-8501 Japan
In computing the singular values of a square matrix, transformation of the input matrix to bidiagonal form accounts for most of the computation time. In this paper, we consider speeding up this process using a combina... 详细信息
来源: 评论
T-Cal: an optimal test for the calibration of predictive models
The Journal of Machine Learning Research
收藏 引用
The Journal of Machine Learning Research 2023年 第1期24卷 15959-16030页
作者: Donghwan Lee Xinmeng Huang Hamed Hassani Edgar Dobriban Graduate Group in Applied Mathematics and Computational Science University of Pennsylvania Philadelphia PA Department of Electrical and Systems Engineering University of Pennsylvania Philadelphia PA Department of Statistics and Data Science University of Pennsylvania Philadelphia PA
The prediction accuracy of machine learning methods is steadily increasing, but the calibration of their uncertainty predictions poses a significant challenge. Numerous works focus on obtaining well-calibrated predict... 详细信息
来源: 评论
Understanding the Influence of Digraphs on Decentralized Optimization: Effective Metrics, Lower Bound, and Optimal Algorithm
arXiv
收藏 引用
arXiv 2023年
作者: Liang, Liyuan Huang, Xinmeng Xin, Ran Yuan, Kun School of Mathematics Science Peking University China Graduate Group in Applied Mathematics and Computational Science University of Pennsylvania United States ByteDance Applied Machine Learning China Center for Machine Learning Research Peking University China
This paper investigates the influence of directed networks on decentralized stochastic non-convex optimization associated with column-stochastic mixing matrices. Surprisingly, we find that the canonical spectral gap, ... 详细信息
来源: 评论
Adaptive coupling of a deep neural network potential to a classical force field
arXiv
收藏 引用
arXiv 2018年
作者: Zhang, Linfeng Wang, Han Weinan, E. Program in Applied and Computational Mathematics Princeton University PrincetonNJ08544 United States Laboratory of Computational Physics Institute of Applied Physics and Computational Mathematics Huayuan Road 6 Beijing100088 China Department of Mathematics and Program in Applied and Computational Mathematics Princeton University PrincetonNJ08544 United States Center for Data Science and Beijing International Center for Mathematical Research Peking University China Beijing Institute of Big Data Research Beijing100871 China
An adaptive modeling method (AMM) that couples a deep neural network potential and a classical force field is introduced to address the accuracy-efficiency dilemma faced by the molecular simulation community. The AMM ... 详细信息
来源: 评论
MONGE-AMPÈRE FLOW FOR GENERATIVE MODELING
arXiv
收藏 引用
arXiv 2018年
作者: Zhang, Linfeng Weinan, E. Wang, Lei Program in Applied and Computational Mathematics Princeton University United States Department of Mathematics and Program in Applied and Computational Mathematics Princeton University United States Center for Data Science Peking University Beijing Institute of Big Data Research Beijing100871 China Institute of Physics Chinese Academy of Sciences Beijing100190 China
We present a deep generative model, named Monge-Ampère flow, which builds on continuous-time gradient flow arising from the Monge-Ampère equation in optimal transport theory. The generative map from the late... 详细信息
来源: 评论
HARADA’S CONJECTURE II FOR THE FINITE GENERAL LINEAR GROUPS AND UNITARY GROUPS
arXiv
收藏 引用
arXiv 2023年
作者: Masahiro, Sugimoto Doctoral Program in Mathematics Degree Programs in Pure and Applied Sciences Graduate School of Science and Technology University of Tsukuba Japan
K. Harada conjectured for any finite group G, the product of sizes of all conjugacy classes is divisible by the product of degrees of all irreducible characters. We study this conjecture when G is the general linear g...
来源: 评论
Enhanced energy coupling for indirect-drive fast-ignition fusion targets (vol 17, pg 435, 2020)
收藏 引用
NATURE PHYSICS 2020年 第7期16卷 815-815页
作者: Zhang, F. Cai, H. B. Zhou, W. M. Dai, Z. S. Shan, L. Q. Xu, H. Chen, J. B. Ge, F. J. Tang, Q. Zhang, W. S. Wei, L. Liu, D. X. Gu, J. F. Du, H. B. Bi, B. Wu, S. Z. Li, J. Lu, F. Zhang, H. Zhang, B. He, M. Q. Yu, M. H. Yang, Z. H. Wang, W. W. Zhang, H. S. Cui, B. Yang, L. Wu, J. F. Qi, W. Cao, L. H. Li, Z. Liu, H. J. Yang, Y. M. Ren, G. L. Tian, C. Yuan, Z. Q. Zheng, W. D. Cao, L. F. Zhou, C. T. Zou, S. Y. Gu, Y. Q. Du, K. Ding, Y. K. Zhang, B. H. Zhu, S. P. Zhang, W. Y. He, X. T. Science and Technology on Plasma Physics Laboratory Laser Fusion Research Center CAEP Mianyang China (GRID:grid.249079.1) (ISNI:0000 0004 0369 4132) Institute of Applied Physics and Computational Mathematics Beijing China (GRID:grid.418809.c) (ISNI:0000 0000 9563 2481) HEDPS Center for Applied Physics and Technology Peking University Beijing China (GRID:grid.11135.37) (ISNI:0000 0001 2256 9319) Institute of Applied Physics and Computational Mathematics Beijing China (GRID:grid.418809.c) (ISNI:0000 0000 9563 2481) National University of Defense Technology College of Computing Science Changsha China (GRID:grid.412110.7) (ISNI:0000 0000 9548 2110) Shenzhen Technology University Center for Advanced Material Diagnostic Technology Shenzhen China (GRID:grid.499351.3) (ISNI:0000 0004 6353 6136) Science and Technology on Plasma Physics Laboratory Laser Fusion Research Center CAEP Mianyang China (GRID:grid.249079.1) (ISNI:0000 0004 0369 4132) Institute of Applied Physics and Computational Mathematics Beijing China (GRID:grid.418809.c) (ISNI:0000 0000 9563 2481) China Academy of Engineering Physics Graduate School Beijing China (GRID:grid.249079.1) (ISNI:0000 0004 0369 4132)
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
来源: 评论
Artificial neural network approach for turbulence models: A local framework
收藏 引用
Physical Review Fluids 2021年 第8期6卷 084612-084612页
作者: Chenyue Xie Xiangming Xiong Jianchun Wang Program in Applied and Computational Mathematics Princeton University Princeton New Jersey 08544 USA Department of Mechanics and Aerospace Engineering Southern University of Science and Technology Shenzhen 518055 People's Republic of China
A local artificial neural network (LANN) framework is developed for turbulence modeling. The Reynolds-averaged Navier-Stokes (RANS) unclosed terms are reconstructed by the artificial neural network based on the local ... 详细信息
来源: 评论