咨询与建议

限定检索结果

文献类型

  • 839 篇 期刊文献
  • 75 篇 会议
  • 2 册 图书

馆藏范围

  • 916 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 740 篇 理学
    • 423 篇 物理学
    • 290 篇 数学
    • 143 篇 统计学(可授理学、...
    • 114 篇 生物学
    • 101 篇 化学
    • 54 篇 系统科学
    • 49 篇 地球物理学
    • 25 篇 天文学
  • 523 篇 工学
    • 172 篇 计算机科学与技术...
    • 127 篇 软件工程
    • 94 篇 材料科学与工程(可...
    • 89 篇 电子科学与技术(可...
    • 74 篇 生物工程
    • 73 篇 电气工程
    • 71 篇 化学工程与技术
    • 66 篇 力学(可授工学、理...
    • 56 篇 控制科学与工程
    • 54 篇 光学工程
    • 54 篇 动力工程及工程热...
    • 48 篇 生物医学工程(可授...
    • 35 篇 信息与通信工程
    • 26 篇 仪器科学与技术
    • 25 篇 核科学与技术
  • 68 篇 管理学
    • 38 篇 管理科学与工程(可...
    • 26 篇 图书情报与档案管...
    • 24 篇 工商管理
  • 47 篇 医学
    • 38 篇 临床医学
    • 35 篇 基础医学(可授医学...
    • 20 篇 药学(可授医学、理...
    • 18 篇 公共卫生与预防医...
  • 20 篇 农学
  • 14 篇 法学
  • 7 篇 经济学
  • 2 篇 教育学
  • 1 篇 军事学

主题

  • 22 篇 molecular dynami...
  • 15 篇 machine learning
  • 13 篇 density function...
  • 11 篇 inverse problems
  • 11 篇 microstructure
  • 11 篇 gravitational wa...
  • 11 篇 classical statis...
  • 9 篇 galaxies
  • 9 篇 deep neural netw...
  • 9 篇 monte carlo meth...
  • 8 篇 jamming
  • 8 篇 mean square erro...
  • 7 篇 deep learning
  • 7 篇 first-principles...
  • 7 篇 diffusion
  • 7 篇 gravitational wa...
  • 7 篇 atomic & molecul...
  • 6 篇 ground state
  • 6 篇 sphere packings
  • 6 篇 electronic struc...

机构

  • 53 篇 program in appli...
  • 48 篇 department of ch...
  • 45 篇 program in appli...
  • 35 篇 graduate school ...
  • 31 篇 institute of app...
  • 30 篇 department of ph...
  • 28 篇 department of ch...
  • 24 篇 department of ph...
  • 22 篇 graduate group i...
  • 22 篇 princeton instit...
  • 19 篇 institute for pl...
  • 19 篇 graduate school ...
  • 18 篇 university of ma...
  • 18 篇 university of so...
  • 17 篇 scuola di ingegn...
  • 17 篇 infn sezione di ...
  • 17 篇 dipartimento di ...
  • 17 篇 università degli...
  • 16 篇 department of as...
  • 16 篇 king’s college l...

作者

  • 63 篇 salvatore torqua...
  • 31 篇 torquato salvato...
  • 28 篇 zhang linfeng
  • 26 篇 weinan e.
  • 21 篇 s. torquato
  • 20 篇 jasra ajay
  • 19 篇 c. kim
  • 19 篇 perdikaris paris
  • 18 篇 g. moreno
  • 18 篇 r. gray
  • 17 篇 r. takahashi
  • 17 篇 j. c. bayley
  • 17 篇 k. komori
  • 17 篇 t. kajita
  • 17 篇 f. hellman
  • 17 篇 m. kinley-hanlon
  • 17 篇 t. mcrae
  • 17 篇 a. parisi
  • 17 篇 t. sawada
  • 17 篇 s. rowan

语言

  • 880 篇 英文
  • 29 篇 其他
  • 7 篇 中文
  • 2 篇 德文
  • 2 篇 法文
检索条件"机构=Graduate Program in Applied Mathematics and Computational Science"
916 条 记 录,以下是251-260 订阅
排序:
An Expert's Guide to Training Physics-informed Neural Networks
arXiv
收藏 引用
arXiv 2023年
作者: Wang, Sifan Wang, Hanwen Sankaran, Shyam Perdikaris, Paris Graduate Group in Applied Mathematics and Computational Science University of Pennsylvania PhiladelphiaPA19104 United States Department of Mechanical Engineering and Applied Mechanics University of Pennsylvania PhiladelphiaPA19104 United States
Physics-informed neural networks (PINNs) have been popularized as a deep learning framework that can seamlessly synthesize observational data and partial differential equation (PDE) constraints. Their practical effect... 详细信息
来源: 评论
ENSEMBLE LEARNING FOR PHYSICS INFORMED NEURAL NETWORKS: A GRADIENT BOOSTING APPROACH
arXiv
收藏 引用
arXiv 2023年
作者: Fang, Zhiwei Wang, Sifan Perdikaris, Paris Graduate Group in Applied Mathematics and Computational Science University of Pennsylvania PhiladelphiaPA19104 United States Department of Mechanichal Engineering and Applied Mechanics University of Pennsylvania PhiladelphiaPA19104 United States
While the popularity of physics-informed neural networks (PINNs) is steadily rising, to this date, conventional PINNs have not been successful in simulating multi-scale and singular perturbation problems. In this work... 详细信息
来源: 评论
RESPECTING CAUSALITY IS ALL YOU NEED FOR TRAINING PHYSICS-INFORMED NEURAL NETWORKS
arXiv
收藏 引用
arXiv 2022年
作者: Wang, Sifan Sankaran, Shyam Perdikaris, Paris Graduate Group In Applied Mathematics And Computational Science University Of Pennsylvania PhiladelphiaPA19104 United States Department Of Mechanical Engineering And Applied Mechanics University Of Pennsylvania PhiladelphiaPA19104 United States
While the popularity of physics-informed neural networks (PINNs) is steadily rising, to this date PINNs have not been successful in simulating dynamical systems whose solution exhibits multi-scale, chaotic or turbulen... 详细信息
来源: 评论
When and why Pinns Fail to Train: A Neural Tangent Kernel Perspective
arXiv
收藏 引用
arXiv 2020年
作者: Wang, Sifan Yu, Xinling Perdikaris, Paris Graduate Group in Applied Mathematics and Computational Science University of Pennsylvania PhiladelphiaPA19104 United States Department of Mechanichal Engineering and Applied Mechanics University of Pennsylvania PhiladelphiaPA19104 United States
Physics-informed neural networks (PINNs) have lately received great attention thanks to their flexibility in tackling a wide range of forward and inverse problems involving partial differential equations. However, des... 详细信息
来源: 评论
DEEP LEARNING ALTERNATIVES OF THE KOLMOGOROV SUPERPOSITION THEOREM
arXiv
收藏 引用
arXiv 2024年
作者: Guilhoto, Leonardo Ferreira Perdikaris, Paris Graduate Group in Applied Mathematics and Computational Science University of Pennsylvania PhiladelphiaPA19104 United States Department of Mechanical Engineering & Applied Mechanics University of Pennsylvania PhiladelphiaPA19104 United States
This paper explores alternative formulations of the Kolmogorov Superposition Theorem (KST) as a foundation for neural network design. The original KST formulation, while mathematically elegant, presents practical chal... 详细信息
来源: 评论
PRIKRY-TYPE FORCING AND THE SET OF POSSIBLE COFINALITIES
arXiv
收藏 引用
arXiv 2022年
作者: Tsukuura, Kenta Doctoral Program in Mathematics Degree Programs in Pure and Applied Sciences Graduate School of Science and Technology University of Tsukuba Tsukuba305-8571 Japan
It is known that the set of possible cofinalities pcf(A) has good properties if A is a progressive interval of regular cardinals. In this paper, we give an interval of regular cardinals A such that pcf(A) has no good ...
来源: 评论
DEEP LEARNING OF FREE BOUNDARY AND STEFAN PROBLEMS
arXiv
收藏 引用
arXiv 2020年
作者: Wang, Sifan Perdikaris, Paris Graduate Group in Applied Mathematics and Computational Science University of Pennsylvania PhiladelphiaPA19104 United States Department of Mechanichal Engineering and Applied Mechanics University of Pennsylvania PhiladelphiaPA19104 United States
Free boundary problems appear naturally in numerous areas of mathematics, science and engineering. These problems present a great computational challenge because they necessitate numerical methods that can yield an ac... 详细信息
来源: 评论
Electron kinetic effects in back-stimulated Raman scattering bursts driven by broadband laser pulses
收藏 引用
Matter and Radiation at Extremes 2024年 第4期9卷 54-67页
作者: Q.K.Liu L.Deng Q.Wang X.Zhang F.Q.Meng Y.P.Wang Y.Q.Gao H.B.Cai S.P.Zhu Graduate School China Academy of Engineering PhysicsBeijing 100088China Institute of Applied Physics and Computational Mathematics Beijing 100094China School of Nuclear Science and Technology University of Science and Technology of ChinaHefei 230026China Shanghai Institute of Laser Plasma Shanghai 201800China HEDPS Center for Applied Physics and TechnologyPeking UniversityBeijing 100871China School of Physics Zhejiang UniversityHangzhou 310027China
We examine electron kinetic effects in broadband-laser-driven back-stimulated Raman scattering(BSRS)bursts using particle-in-cell *** bursts occur during the nonlinear stage,causing reflectivity spikes and generating ... 详细信息
来源: 评论
COMPOSITE BAYESIAN OPTIMIZATION IN FUNCTION SPACES USING NEON - NEURAL EPISTEMIC OPERATOR NETWORKS
arXiv
收藏 引用
arXiv 2024年
作者: Guilhoto, Leonardo Ferreira Perdikaris, Paris Graduate Group in Applied Mathematics and Computational Science University of Pennsylvania PhiladelphiaPA19104 United States Department of Mechanical Engineering and Applied Mechanics University of Pennsylvania PhiladelphiaPA19104 United States
Operator learning is a rising field of scientific computing where inputs or outputs of a machine learning model are functions defined in infinite-dimensional spaces. In this paper, we introduce NEON (Neural Epistemic ... 详细信息
来源: 评论
On the eigenvector bias of Fourier feature networks: From regression to solving multi-scale PDEs with physics-informed neural networks
arXiv
收藏 引用
arXiv 2020年
作者: Wang, Sifan Wang, Hanwen Perdikaris, Paris Graduate Group in Applied Mathematics and Computational Science University of Pennsylvania PhiladelphiaPA19104 United States Department of Mechanichal Engineering and Applied Mechanics University of Pennsylvania PhiladelphiaPA19104 United States
Physics-informed neural networks (PINNs) are demonstrating remarkable promise in integrating physical models with gappy and noisy observational data, but they still struggle in cases where the target functions to be a... 详细信息
来源: 评论