The development of artificial intelligence(AI) and the mining of biomedical data complement each other. From the direct use of computer vision results to analyze medical images for disease screening, to now integratin...
The development of artificial intelligence(AI) and the mining of biomedical data complement each other. From the direct use of computer vision results to analyze medical images for disease screening, to now integrating biological knowledge into models and even accelerating the development of new AI based on biological discoveries, the boundaries of both are constantly expanding, and their connections are becoming closer.
One of the primary interests in understanding biological systems is the interaction between noise and cellular regulation. Noise levels can be altered by rate constant perturbations, which may result in an imbalance o...
SIR (susceptible, infectious, removed) epidemic models are commonly used in infectious disease study. These models use systems of differential equations to estimate epidemiological parameters. However, differential eq...
详细信息
ISBN:
(纸本)9789881925305
SIR (susceptible, infectious, removed) epidemic models are commonly used in infectious disease study. These models use systems of differential equations to estimate epidemiological parameters. However, differential equations often suffer from numerical challenges. Here, we proposed simple, effective and robust innovative methods for estimating key infectious disease parameters. Our methods are reformed from the SIR models, by adjusting components of model compartments. We illustrated the methods using the recent large disease outbreaks, Ebola virus disease and Middle East respiratory syndrome Coronavirus.
Circular permutation (CP) is a protein sequence rearrangement in which the amino- and carboxyl-termini of a protein can be created in different positions along the imaginary circularized sequence. Circularly permutate...
详细信息
The choroid plexus (ChP) regulates cerebrospinal fluid (CSF) composition, providing essential molecular cues for brain development; yet, embryonic ChP secretory mechanisms remain poorly defined. Here we identify apocr...
The choroid plexus (ChP) regulates cerebrospinal fluid (CSF) composition, providing essential molecular cues for brain development; yet, embryonic ChP secretory mechanisms remain poorly defined. Here we identify apocrine secretion by embryonic ChP epithelial cells as a key regulator of the CSF proteome and neurodevelopment in male and female mice. We demonstrate that the activation of serotonergic 5-HT2Creceptors (by WAY-161503) triggers sustained Ca2+signaling, driving high-volume apocrine secretion in mouse and human ChP. This secretion alters the CSF proteome, stimulating neural progenitors lining the brain’s ventricles and shifting their developmental trajectory. Inducing ChP secretion in utero in mice disrupts neural progenitor dynamics, cerebral cortical architecture and offspring behavior. Additionally, illness or lysergic acid diethylamide exposure during pregnancy provokes coordinated ChP secretion in the mouse embryo. Our findings reveal a fundamental secretory pathway in the ChP that shapes brain development, highlighting how its disruption can have lasting consequences for brain health.
Rfam is a database of non-coding RNA families in which each family is represented by a multiple sequence alignment, a consensus secondary structure, and a covariance model. Using a combination of manual and literature...
详细信息
The metabolic enzyme isocitrate dehydrogenase 1(IDH1)catalyzes the oxidative decarboxylation of isocitrate to a-ketoglutarate(a-KG).Its mutation often leads to aberrant gene expression in ***1 was reported to bind tho...
详细信息
The metabolic enzyme isocitrate dehydrogenase 1(IDH1)catalyzes the oxidative decarboxylation of isocitrate to a-ketoglutarate(a-KG).Its mutation often leads to aberrant gene expression in ***1 was reported to bind thousands of RNA transcripts in a sequence-dependent manner;yet,the functional significance of this RNA-binding activity remains ***,we report that IDH1 promotes mRNA translation via direct associations with polysome mRNA and translation *** proteomic analysis in embryonic stem cells(ESCs)revealed strikingenrichmentof ribosomal proteins and translation regulators in IDH1-bound protein *** performed ribosomal profiling and analyzed mRNA transcripts that are associated with actively translating ***,knockout of IDH1 in ESCs led to significant downregulation of polysome-bound mRNA in IDH1 targets and subtle upregulation of ribosome densities at the start codon,indicating inefficient translation initiation upon loss of *** IDH1 to a luciferase mRNA via the MS2-MBP system promotes luciferase translation,independently of the catalytic activity of ***,IDH1 fails to enhance luciferase translation driven by an internal ribosome entry ***,these results reveal an unforeseen role of IDH1 in fine-tuning cap-dependent translation via the initiation step.
Multiplexed fluorescence in situ hybridization (FISH) is a widely used approach for analyzing three-dimensional genome organization, but it is challenging to derive chromosomal conformations from noisy fluorescence si...
详细信息
Multiplexed fluorescence in situ hybridization (FISH) is a widely used approach for analyzing three-dimensional genome organization, but it is challenging to derive chromosomal conformations from noisy fluorescence signals, and tracing chromatin is not straightforward. Here we report a spatial genome aligner that parses true chromatin signal from noise by aligning signals to a DNA polymer model. Using genomic distances separating imaged loci, our aligner estimates spatial distances expected to separate loci on a polymer in three-dimensional space. Our aligner then evaluates the physical probability observed signals belonging to these loci are connected, thereby tracing chromatin structures. We demonstrate that this spatial genome aligner can efficiently model chromosome architectures from DNA FISH data across multiple scales and be used to predict chromosome ploidies de novo in interphase cells. Reprocessing of previous whole-genome chromosome tracing data with this method indicates the spatial aggregation of sister chromatids in S/G2 phase cells in asynchronous mouse embryonic stem cells and provides evidence for extranumerary chromosomes that remain tightly paired in postmitotic neurons of the adult mouse cortex.
Background: Many recent studies have investigated modularity in biological networks, and its role in functional and structural characterization of constituent biomolecules. A technique that has shown considerable prom...
详细信息
Background: Many recent studies have investigated modularity in biological networks, and its role in functional and structural characterization of constituent biomolecules. A technique that has shown considerable promise in the domain of modularity detection is the Newman and Girvan (NG) algorithm, which relies on the number of shortest-paths across pairs of vertices in the network traversing a given edge, referred to as the betweenness of that edge. The edge with the highest betweenness is iteratively eliminated from the network, with the betweenness of the remaining edges recalculated in every iteration. This generates a complete dendrogram, from which modules are extracted by applying a quality metric called modularity denoted by Q. This exhaustive computation can be prohibitively expensive for large networks such as Protein-Protein Interaction Networks. In this paper, we present a novel optimization to the modularity detection algorithm, in terms of an efficient termination criterion based on a target edge betweenness value, using which the process of iterative edge removal may be terminated. Results: We validate the robustness of our approach by applying our algorithm on real-world protein-protein interaction networks of Yeast, *** and Drosophila, and demonstrate that our algorithm consistently has significant computational gains in terms of reduced runtime, when compared to the NG algorithm. Furthermore, our algorithm produces modules comparable to those from the NG algorithm, qualitatively and quantitatively. We illustrate this using comparison metrics such as module distribution, module membership cardinality, modularity Q, and Jaccard Similarity Coefficient. Conclusions: We have presented an optimized approach for efficient modularity detection in networks. The intuition driving our approach is the extraction of holistic measures of centrality from graphs, which are representative of inherent modular structure of the underlying network, and the applic
暂无评论