The objectives of Human Engineering (HE) are generally viewed as increasing human performance, reducing human error, enhancing personnel and equipment safety, and reducing training and related personnel costs. There a...
详细信息
The objectives of Human Engineering (HE) are generally viewed as increasing human performance, reducing human error, enhancing personnel and equipment safety, and reducing training and related personnel costs. There are other benefits that are thoroughly consistent with the direction of the Navy of the future, chief among these is reduction of required numbers of personnel to operate and maintain Navy ships. The Naval Research Advisory Committee (NRAC) report on Man-Machine Technology in the Navy estimated that one of the benefits from increased application of man-machine technology to Navy ship design is personnel reduction as well as improving system availability, effectiveness, and safety The objective of this paper is to discuss aspects of the human engineering design of ships and systems that affect manning requirements, and impact human-performance and safety The paper will also discuss how the application of human engineering leads to improved performance, and crew safety, and reduced workload, all of which influence manning levels. Finally, the paper presents a discussion of tools and case studies of good human engineering design practices which reduce manning.
The four dye fluorescence detection strategy is a widely used approach to automated DNA sequence analysis. An important aspect of data processing in this approach is the multicomponent analysis to deduce the concentra...
详细信息
The four dye fluorescence detection strategy is a widely used approach to automated DNA sequence analysis. An important aspect of data processing in this approach is the multicomponent analysis to deduce the concentrations of four fluorophores from fluorescence emission intensities at four different wavelengths. This requires knowledge of the correct transformation matrix M. The matrix M is a function both of the fluorophores employed and the fluorescence detection system. M is typically determined either by a calibration process with individual dyes, or by choosing four well-separated individual peaks corresponding to the four different dyes. Both are time-consuming and complicated procedures for routine use. An automatic scheme for finding M directly from raw sequence data is presented here. This facilitates data analysis and the underlying algorithm may also find utility in other multispectral applications.
We study the problems of permutation routing and sorting on several models of meshes with fixed and reconfigurable row and column buses. We describe two fast and fairly simple deterministic algorithms for permutation ...
详细信息
We study the problems of permutation routing and sorting on several models of meshes with fixed and reconfigurable row and column buses. We describe two fast and fairly simple deterministic algorithms for permutation routing on two-dimensional networks, and a more complicated algorithm for multi-dimensional networks. The algorithms are obtained by converting two known off-line routing schemes into deterministic routing algorithms, and they can be implemented on a variety of different models of meshes with buses. We also give a deterministic algorithm for 1–1 sorting whose running time matches that for permutation routing, and another algorithm that matches the bisection lower bound on reconfigurable networks of arbitrary constant dimension.
作者:
FAIRHEAD, DLHALL, CCSince graduating from Cleveland State University in 1965 with a Bachelor of Science degree in Mathematics
he has worked for the Navy at Annapolis participating in several different automation efforts ranging from design aids to surface ship bridge control. Mr. Fairhead has completed graduate work in Computer Science at the University of Maryland has a certificate in Computer Programming holds a patent and is a member of the Association for Computing Machinery (ACM). Upon graduation from Morgan State in 1962
Mr. Hall was employed as a physicist at the Naval Surface Warfare Center Carderock Division Annapolis until 1994. During that time period he served as program technical manager for propulsion technology and as senior project scientist for several automation projects including the Automated Ships Bridge project. Mr. Hall also served as a member of the initial Technical Director's Technology Application Team and of the Autonomic Ship Innovation Center Team. Mr. Hall is a member of the American Institute of Physics and Sigma Pi Sigma (National Physics Honor Society).
A growing concern about the shrinking size of the U.S. Navy budget and the pool from which selections will be made to ''man'' U. S. Navy shipboard systems has led to investigations on achieving improve...
详细信息
A growing concern about the shrinking size of the U.S. Navy budget and the pool from which selections will be made to ''man'' U. S. Navy shipboard systems has led to investigations on achieving improvements in affordability and operational effectiveness. One such investigation has resulted in the development of the Standard Monitoring and Control System (SMCS), a modular, open architecture control system which includes the control system components for propulsion, electric plant, auxiliaries, and damage control. The first major technology upgrade to SMCS will entail the insertion of Artificial Intelligence (AI) technologies into HM&E monitoring and control applications. The Intelligent Machinery Control Integration Task (IMCI) was established to provide a structural approach for this major technology upgrade. As part of the first phase of IMCI, an identification of intelligent control requirements, an assessment of AI technologies, and a survey of intelligent control applications were performed. This paper lists those HM&E-related shipboard operational requirements from which intelligent machinery control requirements will be identified. Also, there is an initial assessment of AI-related reasoning and the following AI technologies, knowledge-based systems, fuzzy logic, neural nets, and genetic algorithms. The survey provided some insight into applying AI technologies to SMCS shipboard operational requirements.
Contents and implementation of a computer laboratory for undergraduate electromagnetics are described. The laboratory consists of four 3-hour sessions covering vector calculus, Maxwell's equations (integral and di...
Contents and implementation of a computer laboratory for undergraduate electromagnetics are described. The laboratory consists of four 3-hour sessions covering vector calculus, Maxwell's equations (integral and differential forms), wave propagation in materials, and wave behavior at planar interfaces. Each session contains theory (in the Help file), animations (where relevant) and a quiz. The program runs on IBM compatible 486-based PCs in a Windows environment and uses the Borland C ++ 4.0 compiler.
computer-Aided Design and computer-Aided Manufacturing technology is being implemented in the U.S. Navy's Arleigh Burke (DDG-51) Class Aegis Destroyer program. Under the Navy's direction, the DDG-51 class cons...
computer-Aided Design and computer-Aided Manufacturing technology is being implemented in the U.S. Navy's Arleigh Burke (DDG-51) Class Aegis Destroyer program. Under the Navy's direction, the DDG-51 class construction yards are aggressively pursuing the transition to CAD-based design, construction and life cycle support. Through the CAD initiative, acquisition costs can be reduced without reduction of ships' capability. Building a three dimensional (3D) computer generated model of the ship prior to construction will facilitate the identification and resolution of interference and interface problems that would otherwise remain undetected until actual ship construction. The 3D database contains geometry and design data to support system design and concurrent engineering and is exchanged electronically between the construction yards. Detailed design drawings, fabrication sketches, and numerical control (NC) data are extracted directly from the database to support construction. At the completion of ship construction, as-built models will be provided to the planning yard for life cycle support.
A major contributor to the expense and length of time to design, build, and test new systems has been the need to build and test hardware prototypes to determine their effectiveness in meeting operational requirements...
A major contributor to the expense and length of time to design, build, and test new systems has been the need to build and test hardware prototypes to determine their effectiveness in meeting operational requirements. Recent and dramatic advances in computer simulation technologies hold forth the promise of revolutionizing design and acquisition strategies by providing the means to validate end users' requirements prior to hardware construction. By designing and operationally testing virtual prototypes in a virtual environment, these technologies will soon offer naval architects the ability to build and launch ships in computer-based cyberspace in lieu of the shipbuilder's ways. The authors of this paper provide the background for these developments, explore the significance and ramifications of these technologies to the current process of ship and system design, outline challenges lying ahead, and present their vision and recommendations for future development.
Synthetic ethology is proposed as a means of conducting controlled experiments investigating the mechanisms and evolution of communication. After a discussion of the goals and methods of synthetic ethology, two series...
详细信息
An automated imaging system is described that determines fragment numbers, areas, and size classes of microscopic charcoal in pollen preparations. Charcoal counts made with the scanner are similar to counts made using...
暂无评论