作者:
LANGSTON, MJPOOLE, JRLCDR. Marvin J. Langston
USN is presently located in a staff office to RAdm. Wayne E. Meyer USN deputy commander weapons and combat systems. Currently he is working to define battle force system engineering. Prior to that time he served as command & decision and Aegis display system computer program development manager for DDG-51 class development. He spent three years in St. Paul Minnesota as the NA VSEA technical representative working on DDG-993 class combat system testing DDG-2/15 class NTDS development and ACDS concept development. He served as assistant electronic maintenance officer on USS America CV-66. LCdr. Langston has prior enlisted service in nuclear power reactor operation and holds an MSEE from the Naval Postgraduate School and a BSEE from Purdue University. Capt. James R. Poole
USN (Ret.) is a 1957 graduate of the United States Naval Academy and has served in a variety of sea and shore billets during his 28 year naval career. Sea assignments included tours in destroyers submarines (conventional fleet and nuclear missile) logistic support ships and USS Norton Sound as commanding officer during at-sea evaluation of the Aegis EDM-1 weapon system. Shore tours at the U.S. Naval Postgraduate School staff COMSUBLANT Aegis Project Office and Aegis Techrep RCA Moorestown N.J. preceded his final active duty assignment as deputy for operations U.S. Naval Academy. Capt. Poole has been a designated WSAM since 1975. He is currently employed by Advanced Technology Incorporated.
作者:
STERN, HMETZGER, RHoward K. Stern:is presently vice president of Robotic Vision Systems
Inc. He received a bachelor of electrical engineering degree from College of the City of New York in 1960. Mr. Stern joined Dynell Electronics Corporation in 1971 and became part of the Robotic Vision Systems
Inc. staff at the time of its spin-off from Dynell. He was program manager of the various three-dimensional sensing and replication systems constructed by Dynell and Robotic Vision Systems. As program manager his responsibilities encompassed technical administrative and operational areas. The first two portrait sculpture studio systems and the first three replication systems built by Robotic Vision Systems Inc. were designed manufactured and operated under his direction. Before joining Dynell
Mr. Stern was a senior engineer at Instrument Systems Corporation and chief engineer of the Special Products Division of General Instrument Corporation. Prior to these positions Mr. Stern was chief engineer of Edo Commercial Corporation. At General Instrument and Edo Commercial he was responsible for the design and manufacture of military and commercial avionics equipment. Mr. Stern is presently responsible for directing the systems design and development for all of the company's programs.Robert J. Metzger:is currently engineering group leader at Robotic Vision Systems
Inc. He graduated summa cum laude from the Cooper Union in 1972 with a bachelor of electrical engineering degree. Under sponsorship of a National Science Foundation graduate fellowship he graduated from the Massachusetts Institute of Technology in 1974 with the degrees of electrical engineer and master of science (electrical engineering). In 1979 Mr. Metzger graduated from Polytechnic Institute of New York with the degree of master of science (computer science). Since 1974
Mr. Metzger has been actively engaged in the design of systems and software for noncontact threedimensional optical measurement for both military and commercial applications. Of particular note are his c
Ship's propellers are currently measured by manual procedures using pitchometers, templates and gauges. This measurement process is extremely tedious, labor intensive and time consuming. In an effort to provide in...
详细信息
Ship's propellers are currently measured by manual procedures using pitchometers, templates and gauges. This measurement process is extremely tedious, labor intensive and time consuming. In an effort to provide increased accuracy, repeatability and cost effectiveness in propeller manufacture, an automated propeller optical measurement system (APOMS) has been built which rapidly and automatically scans an entire ship's propeller using a 3-D vision sensor. This equipment is integrated with a propeller robotic automated templating system (PRATS) and the propeller optical finishing system (PROFS) which robotically template and grind the propeller to its final shape, using the APOMS-derived data for control feedback. The optical scanning and the final shape are both controlled by CAD/CAM data files describing the desired propeller shape. An automated propeller balancing system is incorporated into the PROFS equipment. The APOMS/PRATS/PROFS equipment is expected to provide lower propeller manufacturing costs.
Air cushion vehicles (ACVs) have operated successfully on commercial routes for about twenty years. The routes are normally quite short; the craft are equipped with radar and radio navigation aids and maintain continu...
详细信息
Air cushion vehicles (ACVs) have operated successfully on commercial routes for about twenty years. The routes are normally quite short; the craft are equipped with radar and radio navigation aids and maintain continuous contact with their terminals. Navigation of these craft, therefore, does not present any unusual difficulty. The introduction of air cushion vehicles into military service, however, can present a very different picture, especially when external navigation aids are not available and the craft must navigate by dead reckoning. This paper considers the problems involved when navigating a high-speed air cushion vehicle by dead reckoning in conditions of poor visibility. A method is presented to assess the ACV's navigational capability under these circumstances. A figure of merit is used to determine the sensitivity of factors which affect navigation such as the range of visibility, point-to-point distance, speed, turning radius and accuracy of onboard equipment. The method provides simplistic but adequate answers and can be used effectively to compare the-capability and cost of alternative navigation concepts.
作者:
DETOLLA, JPFLEMING, JRJoseph DeTolla:is a ship systems engineer in the Ship Systems Engineering Division
SEA 56D5 at the Naval Sea Systems Command. His career with the Navy started in 1965 at the Philadelphia Naval Shipyard Design Division. In 1971 he transferred to the Naval Ship Engineering Center. He has held positions as a fluid systems design engineer and auxiliary systems design integration engineer. Mr. DeTolla has worked extensively in the synthesis and analysis of total energy systems notably the design development of the FFG-7 class waste heat recovery system. He is NA VSEA's machinery group computer supported design project coordinator and is managing the development of a machinery systems data base load forecasting algorithms and design analysis computer programs. Mr. DeTolla has a bachelor of science degree in mechanical engineering from Drexel University and a master of engineering administration degree from George Washington University. He is a registered professional engineer in the District of Columbia and has written several technical papers on waste heat recovery and energy conservation. Jeffrey Fleming:is a senior project engineer in the Energy R&D Office at the David Taylor Naval Ship R&D Center. In his current position as group leader for the future fleet energy conservation portion of the Navy's energy R&D program
he is responsible for the identification and development of advanced components and subsystems which will lead to reductions in the fossil fuel consumption of future ships. Over the past several years he has also directed the development and application of total energy computer analysis techniques for the assessment of conventional and advanced shipboard machinery concepts. Mr. Fleming is a 1971 graduate electrical engineer of Virginia Polytechnic Institute and received his MS in electrical engineering from Johns Hopkins University in 1975. Mr. Fleming has authored various technical publications and was the recipient of the Severn Technical Society's “Best Technical Paper of the Year” award in 1
In support of the Navy's efforts to improve the energy usage of future ships and thereby to reduce fleet operating costs, a large scale computer model has been developed by the David Taylor Naval Ship Research and...
In support of the Navy's efforts to improve the energy usage of future ships and thereby to reduce fleet operating costs, a large scale computer model has been developed by the David Taylor Naval Ship Research and Development Center (DTNSRDC) to analyze the performance of shipboard energy systems for applications other than nuclear or oil-fired steam propulsion plants. This paper discusses the applications and utility of this computerprogram as a performance analysis tool for design of ship machinery systems. The program is a simulation model that performs a complete thermodynamic analysis of a user-specified energy system. It offers considerable flexibility in analyzing a variety of propulsion, electrical, and auxiliary plant configurations through a component building block structure. Component subroutines that model the performance of shipboard equipment such as engines, boilers, generators, and compressors are available from the program library. Component subroutines are selected and linked in the program to model the desired machinery plant functional configurations. The operation of the defined shipboard energy system may then be simulated over a user-specified scenario of temperature, time, and load profiles. The program output furnishes information on component operating characteristics and fuel demands, which allows evaluation of the total system performance.
作者:
PAIGE, KKCONVERSE, RAUSNLCdr. Kathleen K. Paige
USN:graduated with a BA from the University of New Hampshire in 1970. She received her commission from Officer Candidate School in April 1971 and performed her first tour of duty with VFP-63 NAS Miramar. LCdr. Paige then received her MS from the Naval Post Graduate School in June 1976 and returned to San Diego to serve as Head Support Software Division at the Fleet Combat Direction System Support Activity. In May 1981 she reported to NA VSEA (PMS-408) where she served initially as Chairman of the NAVMAT Software Engineering Environment Working Group. She has been assigned as Deputy AN/UYK-43 Acquisition Manager since October 1981. LCdr. Paige was designated a fully qualified Engineering Duty Officer in December 1983. Robert A. Converse:is presently the Acquisition Manager for the Ada Language System/Navy (ALS/N) for the Naval Sea Systems Command Tactical Embedded Computer Resources Project. As such
he is responsible for the definition and development of the ALS/N to be provided as a Navy standard computer programming system for Navy mission critical applications. Mr. Converse received a Bachelor of Science degree in Physics from Wheaton College Wheaton II. He spent fourteen years with the Naval Underwater Systems Center Newport Rhode Island during which time he designed and developed the Fortran compiler for the Navy Standard AN/UYK-7 computer. Also during that period he received a Master of Science degree in Computer Science from the University of Rhode Island. His thesis for that degree was entitled “Optimization Techniques for the NUSC Fortran Cross-Compiler”. Mr. Converse started his involvement with the Ada program in 1975 with the initial “Strawman” requirements review. Subsequently he was named as the Navy Ada Distinguished Reviewer and was intimately involved in the selection and refinement of the Ada language as it evolved to become ANSI/MIL-STD-1815A.
The U.S. Navy introduced the use of digital computers in mission critical applications over a quarter of a century ago. Today, virtually every system in the current and planned Navy inventory makes extensive use of co...
The U.S. Navy introduced the use of digital computers in mission critical applications over a quarter of a century ago. Today, virtually every system in the current and planned Navy inventory makes extensive use of computer technology. computers embedded in mission critical Navy systems are integral to our strategic and tactical defense capabilities. Thus, the military power of the U.S. Navy is inextricably tied to the use of programmable digital computers. The computerprogram is the essential element that embodies the system “intelligence”. In addition, it provides the flexibility to respond to changing threats and requirements. However, this very flexibility and capability poses a host of difficulties hindering full realization of the advantages. This paper describes the lessons learned about computerprogram development over the past twenty five years and discusses a software engineering process that addresses these lessons. It then describes how Ada and its related Ada programming Support and Run-Time Environments foster this software engineering process to improve computerprogram productivity and achieve greater system reliability and adaptibility. Finally, the paper discusses how the use of Ada and its environments can enhance the interoperability and transferability of computerprograms among Navy projects and significantly reduce overall life cycle costs for Navy mission critical computerprograms.
To meet energy conservation goals of the U.S. Navy, its attention has been focused on ways to reduce individual ship total resistance and powering requirements. One possible method of improving ship powering character...
详细信息
To meet energy conservation goals of the U.S. Navy, its attention has been focused on ways to reduce individual ship total resistance and powering requirements. One possible method of improving ship powering characteristics is by modifying existing individual ship hulls with the addition of bulbous bows. This paper will identify the merits of retrofitting bow bulbs on selected U.S. Navy auxiliary and amphibious warfare ships. A procedure for performing a cost-benefit analysis will be shown for candidate ship classes. An example of this technique for an amphibious warfare ship will also be provided. A brief discussion of future methods to be used for bulbous bow design such as application of systematic model test data and numerical hydrodynamic techniques will be given.
作者:
VOELKER, RGLEN, IFSEIBOLD, FBAYLY, IRichard Voelker:is Vice President of ARCTEC
Incorporated a firm specializing in cold regions technology. He has been responsible for the management of thePolarClass Traffic-ability Program since its inception and annually participates in the field data collection in the Arctic. His prior experience includes positions with the U.S. Coast Guard in the icebreaker design project the Military Sealift Command and at Newport News Shipbuilding. He is a graduate of N. Y.S. Maritime College and has a MS degree from the University of Michigan. I.F. Glen:received his professional degrees in naval architecture from the Royal Naval Engineering College
Manadon Plymouth and RN College Greenwich London entering the Royal Corps of Naval Constructors in 1967. After serving as a Constructor Lieutenant in the Royal Navy's Far East Fleet for a short period he joined the Polaris submarine project team in Bath England in 1968. In 1971 he was seconded to the Canadian Department of National Defense in Ottawa as a Constructor Lieutenant Commander under NATO exchange arrangements where he had responsibilities initially for conventional submarines and latterly for computer aided conceptual design. He ventured to Bath England in 1974 and joined Forward Design Group. In 1975 he took a position as a civilian engineer in the Canadian Defense Department and was Head of Hull Systems Engineering from 1977 to 1979. He joined ARCTEC CANADA LIMITED in 1980 and in addition to managing ice model testing projects and full scale trials has specialized in structural response of ships to ice impact. He headed ARCTEC's Kanata Laboratory from 1981 to 1983 when he was promoted to president. Frederick Seibold:is a research program manager with the Maritime Administration's Office of Advanced Ship Development and Technology. He is responsible for the marine science program which includes research in the areas of ship powering
structures and propeller performance and Arctic technology. Mr. Seibold has been employed by Mar Ad since 1961 having hel
This paper describes a multiyear program to make an operational assessment on the feasibility of a year-round Arctic marine transportation system to serve Alaska. Specifically, the three objectives were to: collect me...
This paper describes a multiyear program to make an operational assessment on the feasibility of a year-round Arctic marine transportation system to serve Alaska. Specifically, the three objectives were to: collect meteorological and ice data along potential marine routes; instrument the hull and propulsion machinery to improve design critera for ice-worthy ships; and demonstrate that ships can operate in midwinter Alaskan Arctic ice conditions. The U.S. Coast Guard's Polar class icebreakers were used to make the operational assessment by annually extending the route northward and by operating throughout the winter season. This paper reviews some of the operational and technical achievements to date, as well as plans for future Arctic deployments.
A proposed cost effective alternative to current U.S. Navy structurally configured hulls is presented in this paper. This proposed design for producibility concept involves the elimination of structural stanchions and...
A proposed cost effective alternative to current U.S. Navy structurally configured hulls is presented in this paper. This proposed design for producibility concept involves the elimination of structural stanchions and transverse web frames. The potential impact of this “no frame” concept on structural design, weight and construction and material costs for naval surface frigates and destroyers is reflected in 1) reduced costs for the installation of distributive systems and 2) a reduced number and complexity of structural details providing a more reliable and less costly structure. This study was performed in three parts: 1) Determine the most feasible length between bulkheads without frames; 2) Using this length perform detail weight studies and construction and material costs analysis comparison on a 72-foot long hull module, with and without frames, for a FFG-7, and 3) Estimate the saving in man hours of labor on the installation of distributive systems and shipfitting for an FFG-7. For the feasible length studies on the “no frame” structural configuration, thirty-seven strength, weight and vertical center of gravity studies were performed on two ship classes; twenty-two on the FFG-7 class and fifteen on the DD-963 class. The detailed weight studies and construction and material cost analyses were conducted for FFG-7 “no frame” and “as built” modules. Results indicating the “no frame” concept module was 6.8% heavier and 14.8% less costly than the “as built” module. For the impact of an FFG-7 “no frame” structurally configured hull on the cost of labor required for the installation of distributive systems and for other functional work such as ship fitting, welding, and electrical, this study indicated a reduction of 169,206 labor hours per ship, representing 7.12% of the total required man hours to fabricate an FFG-7 class ship. With the employment of the “no frame” concept, certain areas of significant concern and potential risk were addressed. These include: 1) t
The structural design of a ship's section is a complicated, repetitive and time consuming task. With the advent of new technology, high speed computers have enabled the ship designer to accomplish in a matter of s...
The structural design of a ship's section is a complicated, repetitive and time consuming task. With the advent of new technology, high speed computers have enabled the ship designer to accomplish in a matter of seconds what would formerly take days to accomplish by hand. The Structural Synthesis Design program (SSDP) is a N avy developed computer-aided design tool which is used to design (or to analyze) the longitudinal scantlings for a variety of ship cross sections, consisting of any practical combinations of decks, platforms, bulkheads and materials, i.e., various steel and aluminum alloys. The final hull section design will have the lowest practical weight for the chosen geometric configuration, structural arrangements, and imposed loadings. The scantling developed by the program will satisfy all U.S. N avy ship structural design criteria. An explanation of the objective and design elements of N avy ship structures is included. The rationale behind the SSDP design philosophy is developed along with the significant program capabilities. In an attempt to highlight the influence of automated design procedures on the current naval ship design process, the effect of the SSDP on the DDG 51 destroyer structural development is addressed.
One of the most serious problems encountered in Naval steam plants following World War II was the unreliable performance of boiler and main feedpump pneumatic control systems. In addition to control component and syst...
One of the most serious problems encountered in Naval steam plants following World War II was the unreliable performance of boiler and main feedpump pneumatic control systems. In addition to control component and system design deficiencies, these control systems suffered from inadequate methods to measure and adjust system alignment. This paper describes the development of a set of procedures for on-line alignment verification (OLV) of pneumatic main boiler and feedpump control systems. The procedures are designed for use by N avy control system technicians and, in addition to on-line alignment verification, provide guidance for troubleshooting and for performing system alignment. Procedure static checks measure steady state steaming performance and OLV procedure dynamic checks measure the ability of the boiler and control systems to respond to load changes. The paper describes typical control system characteristics that influence OLV procedure content and the supporting analysis that was used to establish alignment criteria ranges that satisfy both steady state and transient performance requirements. Also described is the alignment criteria tolerance analysis along with the steps involved in a typical OLV check procedure development. Descriptions of the various OLV checks, troubleshooting procedures and alignment procedures are provided. Typical shipboard implementation requirements are described and experience to date with the procedures is provided along with a status report on OLV procedure implementations.
暂无评论