A general transient mathematical model for managing microalgae derived hydrogen production, with temperature dependence of the cultivation medium is developed. For that, the simplified physical model combines principl...
详细信息
ISBN:
(纸本)9781467346290
A general transient mathematical model for managing microalgae derived hydrogen production, with temperature dependence of the cultivation medium is developed. For that, the simplified physical model combines principles of classical thermodynamics, mass, species and heat transfer, resulting in a system of differential equations which are discretized in space using a three-dimensional cell-centered finite volume scheme. A Michaelis-Menten type expression is proposed for modeling the rate of H_2 production with dependence on O_2 inhibition. Tridimensional simulations are performed in order to determine the mass fractions distributions inside a compact photobioreactor (PBR), under different operating conditions. A relatively coarse mesh was used (6048 volume elements) to obtain converged results for a large compact PBR computational domain (5m×2m×8m). The largest computational time required for obtaining results was 560 s, i.e., less than 10 min. The numerical results for microalgal growth are validated by direct comparison to experimental measurements. Hydrogen production simulations are conducted to demonstrate PBR intermittent operation (aerobic and anaerobic stages) feasibility and adequate species evolution trends in an indirect biophotolysis approach. Therefore, after experimental validation for a particular H_2 production system, it is reasonable to state that the model could be used as an efficient tool for PBR systems thermal design, control and optimization for maximum H_2 production.
The objective of the present study was to evaluate the effect of the residence time in the oral cavity on the electrochemical and microstructural properties of nickel-titanium superelastic and thermoelastic archwires ...
详细信息
In this study, a low viscosity, high performance cyanate ester (CE) resin system was used with non-functionalized and functionalized multiwall carbon nanotubes (MWNTs) to create cyanate ester-MWNT nanocomposites. Effe...
详细信息
We report on a nearly 8-fold increase in multi-hole defect photonic crystal biosensor response by incorporating insitu synthesis of DNA probes, as compared to the conventional functionalization method employing pre-sy...
详细信息
We report on a nearly 8-fold increase in multi-hole defect photonic crystal biosensor response by incorporating insitu synthesis of DNA probes, as compared to the conventional functionalization method employing pre-synthesized DNA probe immobilization.
Silicon nanodevice biosensors have been attracted a lot of attention due to its advantages of label-free, real-time and very high sensitive detection. This study employs self-assembly monolayer (SAM) of methoxy-poly(e...
详细信息
ISBN:
(纸本)9781457717666
Silicon nanodevice biosensors have been attracted a lot of attention due to its advantages of label-free, real-time and very high sensitive detection. This study employs self-assembly monolayer (SAM) of methoxy-poly(ethyleneglycol) silane (MPEG-sil) as passivation on Si nanodevices. Ablation of SAM by Joule heating (JH) was performed at n - region of a nanobelt device, where the linker molecules, biotin were modified subsequently. Detection of Alexa dye-labeled Streptavidin (SA) showed that the fluorescence intensity at n - region increased with each 50-μl SA injection and saturated after the 4 th injection. A difference of fluorescence intensity between SAM-ablated device and without passivation is 4.9 fold. Threshold voltage (V th ) shifted ca. 35 mV after the 4 th injection for SAM-ablated device and as-fabricated device exhibited only a 10-mV V th shift. The results indicated that SAM-ablated device possess potential in reduction of sensing time and in increase of sensitivity for low concentration detection.
暂无评论