版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
Based on high-order linear multistep methods (LMMs), we use the class of extended trapezoidal rules (ETRs) to solve boundary value problems of ordinary differential equations (ODEs), whose numerical solutions can be approximated by boundary value methods (BVMs). Then we combine this technique with fourth-order Padé compact approximation to discrete 2D Schrödinger equation. We propose a scheme with sixth-order accuracy in time and fourth-order accuracy in space. It is unconditionally stable due to the favourable property of BVMs and ETRs. Furthermore, with Richardson extrapolation, we can increase the scheme to order 6 accuracy both in time and space. Numerical results are presented to illustrate the accuracy of our scheme.
电话和邮箱必须正确填写,我们会与您联系确认。
版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
暂无评论