作者:
KATZ, RSJAHNKE, LJEWETT, CECdr. Larry Jahnke
USN:is presently Head of the Architecture Branch of the Avionics Engineering division AIR-546 of the Naval Air Systems Command. Among his current responsibilities is to lead implementation activities of the NAVAIR Advanced Avionics Architecture study described in this paper. Cdr. Jahnke graduated from the University of Minnesota with a B.S. degree in aeronautical engineering and was commissioned in 1974. After flight training as a Naval flight officer he was assigned to Naval Air Station Barbers Point Hawaii where he served as Tactical Coordinator for P-3B aircraft. He was assigned to the Communications Directorate of the Joint Staff in 1990 where he participated in support of Desert Shield/Desert Storm and was part of the original cadre of officers responsible for the “C41 for the Warrior” concept. Cdr. Jahnke also has a Master of Science degree from the University of Southern California and is a 1990 graduate of the Industrial College of the Armed Forces.Cdr. Charles E. Jewett
USN:is currently the Common Avionics Requirements Officer for Naval Aircraft Programs. He has served the Navy as an Aeronautical Engineering Duty Officer since 1982 with previous defense acquisition assignments as the Avionics Architecture and Engineering Branch Head Fighter/Attack Avionics systems Engineering Branch Head and A-12 Avionics Officer and A-6F Deputy Program Manager and the A-6 Avionics Officer. Cdr. Jewett entered the Navy as an Aviation Officer Candidate in 1971 receiving his commission and earning his wings as a Naval Flight Officer the same year. After graduating from the U.S. Naval Test Pilot School in 1976 he was assigned to the Strike Aircraft Test Directorate of the Naval Air Test Center where he participated in various electronic warfare electro-optics and software update evaluations for A-6 EA-6B and OV-10 aircraft. In Cdr. Jewett's previous assignment at NAVAIRSYSCOM he led a major Avionics Architecture Study (the subject of this paper) that surveyed cutting-edge avionics technol
To establish a planning basis for future avionics systems, the Naval Air Systems Command (NAVAIR) conducted an avionics architecture investigation during 1992-1993, culminating in a final report published in August 19...
To establish a planning basis for future avionics systems, the Naval Air Systems Command (NAVAIR) conducted an avionics architecture investigation during 1992-1993, culminating in a final report published in August 1993. In the course of the study, U.S. Industry provided significant information to a NAVAIR avionics database for both technologies and systems integration methods. From the study emerged an implementation strategy to allow NAVAIR to develop effective avionics systems in the future that use commercial products and standards where applicable but also allow the ready use of new and emerging technologies. Recommended strategies concentrate on the development process, especially the use of sound systems engineering techniques and the maximum practical use of commercial standards and products. This paper reviews the methodology employed during the NAVAIR investigation, and presents the key findings and resulting implementation strategies. The paper concludes with a brief summary of current implementation plans at NAVAIR.
作者:
TUCK, EFPATTERSON, DPSTUART, JRLAWRENCE, MHCalling Communications Corporation. 1900 West Garvey Ave
South. Suite 200 West Covina CA 91790 USA. Chairman of Calling Communications Corporation. He is also the Managing Director of Kinship Venture Management
Inc. the general partner of Kinship Partners 11 and a General Partner of Boundary the general partner of The Boundary Fund. As a venture capitalist he has founded or participated in founding several telecommunications companies including Calling Communications Corporation Magellan Systems Corporation
manufactures of Global Positioning System receivers Applied Digital Access
manufacturer of DS-3 test access and network performance monitoring equipment Endgate Technology Corporation
specialists in satellite phased array antennas and Poynting Systems Corporation. now a division of Reliance Corporation
manufacturers of fibre optic transport equipment. He was a founder of Kebby Microwave Corporation where he invented the first solid-state. frequency-modulated commercial microwave link system. The company was acquired by ITT Corporation where he rose to the position of V.P. and Technical Director of ITT North America Telecommunications Inc. Subsequently he was V.P. of Marketing and Engineering at American Telecommunications Inc. (ATC). He was founding Director of American Telecom Inc. a joint venture between ATC and Fujitsu and has served on more than 20 boards of directors including those of three public companies. He has authored articles on microwave engineering and telephone signalling and was a contributor to Reference Data For Radio Engineers. He is a graduate of the University of Missouri at Rolla where he was later awarded an honorary Professional degree and serves on its Academy of Electrical Engineering. Mr Tuck is a Senior Member of the IEEE a Fellow of the Institution of Engineers (Australia) a Professional Member of the AIAA and a registered professional engineer in three states. More than 25 years of experience in the telecommunications industry where he has been responsibl
There is a very large demand for basic telephone service in developing nations, and remote parts of industrialized nations, which cannot be met by conventional wireline and cellular systems. This is the world's la...
详细信息
There is a very large demand for basic telephone service in developing nations, and remote parts of industrialized nations, which cannot be met by conventional wireline and cellular systems. This is the world's largest unserved market. We describe a system which uses recent advances in active phased arrays, fast-packet switching technology, adaptive routeing, and light spacecraft technology, in part based on the work of the Jet Propulsion Laboratory and on recently-declassified work done on the Strategic Defense Initiative, to make it possible to address this market with a global telephone network based on a large low-Earth-orbit constellation of identical satellites. A telephone utility can use such a network to provide the same modern basic and enhanced telephone services offered by telephone utilities in the urban centres of fully-industrialized nations. Economies of scale permit capital and operating costs per subscriber low enough to provide a service to all subscribers, regardless of location, at prices comparable to the same services in urban areas of industrialized nations, while generating operating profits great enough to attract the capital needed for its construction. The bandwidth needed to support the capacity needed to gain these economies of scale requires that the system use K(alpha)-band frequencies. This choice of frequencies places unusual constraints on the network design, and in particular forces the use of a large number of satellites. Global demand for basic and enhanced telephone service is great enough to support at least three networks of the size described herein. The volume of advanced components, and services such as launch services, required to construct and replace these networks is sufficient to propel certain industries to market leadership positions in the early 21st Century.
作者:
STERN, HMETZGER, RHoward K. Stern:is presently vice president of Robotic Vision Systems
Inc. He received a bachelor of electrical engineering degree from College of the City of New York in 1960. Mr. Stern joined Dynell Electronics Corporation in 1971 and became part of the Robotic Vision Systems
Inc. staff at the time of its spin-off from Dynell. He was program manager of the various three-dimensional sensing and replication systems constructed by Dynell and Robotic Vision Systems. As program manager his responsibilities encompassed technical administrative and operational areas. The first two portrait sculpture studio systems and the first three replication systems built by Robotic Vision Systems Inc. were designed manufactured and operated under his direction. Before joining Dynell
Mr. Stern was a senior engineer at Instrument Systems Corporation and chief engineer of the Special Products Division of General Instrument Corporation. Prior to these positions Mr. Stern was chief engineer of Edo Commercial Corporation. At General Instrument and Edo Commercial he was responsible for the design and manufacture of military and commercial avionics equipment. Mr. Stern is presently responsible for directing the systems design and development for all of the company's programs.Robert J. Metzger:is currently engineering group leader at Robotic Vision Systems
Inc. He graduated summa cum laude from the Cooper Union in 1972 with a bachelor of electrical engineering degree. Under sponsorship of a National Science Foundation graduate fellowship he graduated from the Massachusetts Institute of Technology in 1974 with the degrees of electrical engineer and master of science (electrical engineering). In 1979 Mr. Metzger graduated from Polytechnic Institute of New York with the degree of master of science (computer science). Since 1974
Mr. Metzger has been actively engaged in the design of systems and software for noncontact threedimensional optical measurement for both military and commercial applications. Of particular note are his c
Ship's propellers are currently measured by manual procedures using pitchometers, templates and gauges. This measurement process is extremely tedious, labor intensive and time consuming. In an effort to provide in...
详细信息
Ship's propellers are currently measured by manual procedures using pitchometers, templates and gauges. This measurement process is extremely tedious, labor intensive and time consuming. In an effort to provide increased accuracy, repeatability and cost effectiveness in propeller manufacture, an automated propeller optical measurement system (APOMS) has been built which rapidly and automatically scans an entire ship's propeller using a 3-D vision sensor. This equipment is integrated with a propeller robotic automated templating system (PRATS) and the propeller optical finishing system (PROFS) which robotically template and grind the propeller to its final shape, using the APOMS-derived data for control feedback. The optical scanning and the final shape are both controlled by CAD/CAM data files describing the desired propeller shape. An automated propeller balancing system is incorporated into the PROFS equipment. The APOMS/PRATS/PROFS equipment is expected to provide lower propeller manufacturing costs.
作者:
PAIGE, KKCONVERSE, RAUSNLCdr. Kathleen K. Paige
USN:graduated with a BA from the University of New Hampshire in 1970. She received her commission from Officer Candidate School in April 1971 and performed her first tour of duty with VFP-63 NAS Miramar. LCdr. Paige then received her MS from the Naval Post Graduate School in June 1976 and returned to San Diego to serve as Head Support Software Division at the Fleet Combat Direction System Support Activity. In May 1981 she reported to NA VSEA (PMS-408) where she served initially as Chairman of the NAVMAT Software Engineering Environment Working Group. She has been assigned as Deputy AN/UYK-43 Acquisition Manager since October 1981. LCdr. Paige was designated a fully qualified Engineering Duty Officer in December 1983. Robert A. Converse:is presently the Acquisition Manager for the Ada Language System/Navy (ALS/N) for the Naval Sea Systems Command Tactical Embedded Computer Resources Project. As such
he is responsible for the definition and development of the ALS/N to be provided as a Navy standard computer programming system for Navy mission critical applications. Mr. Converse received a Bachelor of Science degree in Physics from Wheaton College Wheaton II. He spent fourteen years with the Naval Underwater Systems Center Newport Rhode Island during which time he designed and developed the Fortran compiler for the Navy Standard AN/UYK-7 computer. Also during that period he received a Master of Science degree in Computer Science from the University of Rhode Island. His thesis for that degree was entitled “Optimization Techniques for the NUSC Fortran Cross-Compiler”. Mr. Converse started his involvement with the Ada program in 1975 with the initial “Strawman” requirements review. Subsequently he was named as the Navy Ada Distinguished Reviewer and was intimately involved in the selection and refinement of the Ada language as it evolved to become ANSI/MIL-STD-1815A.
The U.S. Navy introduced the use of digital computers in mission critical applications over a quarter of a century ago. Today, virtually every system in the current and planned Navy inventory makes extensive use of co...
The U.S. Navy introduced the use of digital computers in mission critical applications over a quarter of a century ago. Today, virtually every system in the current and planned Navy inventory makes extensive use of computer technology. Computers embedded in mission critical Navy systems are integral to our strategic and tactical defense capabilities. Thus, the military power of the U.S. Navy is inextricably tied to the use of programmable digital computers. The computer program is the essential element that embodies the system “intelligence”. In addition, it provides the flexibility to respond to changing threats and requirements. However, this very flexibility and capability poses a host of difficulties hindering full realization of the advantages. This paper describes the lessons learned about computer program development over the past twenty five years and discusses a software engineering process that addresses these lessons. It then describes how Ada and its related Ada programming Support and Run-Time Environments foster this software engineering process to improve computer program productivity and achieve greater system reliability and adaptibility. Finally, the paper discusses how the use of Ada and its environments can enhance the interoperability and transferability of computer programs among Navy projects and significantly reduce overall life cycle costs for Navy mission critical computer programs.
This paper discusses the Interactive Graphics System used by the General Electric Company, Medium Steam Turbine Department (Engineering & Manufacturing) for designing, drafting, and manufacturing applications. A b...
This paper discusses the Interactive Graphics System used by the General Electric Company, Medium Steam Turbine Department (Engineering & Manufacturing) for designing, drafting, and manufacturing applications. A brief overview of the hardware malting up the system is described, followed by a more detailed description of the actual applications. Two-dimensional applications described include a Heat Balance Analysis, Flow Diagrams, and Electrical Schematics. A more fruitful area for increased productivity gains is described in the three-dimensional or mechanical applications including turbine design & layout and bucket design. coordination of the design with manufacturing for numerical control tape generation is described through CAM and Plate Frame Cutting applications. Finally, a short review of the engineering design work using Interactive Graphics is discussed. Productivity gains of 2.6 to 1 are being realized, and the overall savings to the Medium Steam Department are outlined.
作者:
NACHTSHEIM, JOHN J.BALLOU, L. DENNISJohn J. Nachtsheim:is currently the Deputy Assistant Administrator for Research & Development for the Maritime Administration. His duties are the planning
coordinating organizing evaluating and directing of the R&D activities of MarAd. His past experiences include: Naval Architect for the Naval Ship Engineering Center 1959 Deputy Chief Design Engineer for the Puget Sound Naval Shipyard
1958 to 1959 and Naval Architect
the former Bureau of Ships 1948 to 1958. His education is comprised of a B.S. degree from the Webb Institute of Naval Architecture an L.L.B. degree from the George Washington University Law School completion of the Advanced Management Program at Harvard University and current study of Transportation at the American University. He is a Registered Professional Engineer in the District of Columbia and a Member of the Bar in the District of Columbia and the State of Maryland. In addition to ASNE his other professional memberships include the Society of Naval Architects and Marine Engineers the Society of Aeronautical Weight Engineers and the Association of Senior Engineers of the Naval Ships Systems Command (Honorary). USNCommander L. Dennis Ballou:
USN is the Head of the Engineering Service Office Naval Ship Engineering Center. He is involved in computer hardware and software services to support engineering design automatic data processing systems design work study and quality assurance. Prior to NavSec duty Commander Ballou served in various billets afloat and ashore: tours on the USS Skagit and Tang supervision of the USS Skipjack's first overhulconstruction of the USS Nathanael Greene and helping to establish the Polaris overhaul program. He is a graduate of the U.S. Naval Academy
Officers' Submarine School and the Webb Institute of Naval Architecture. He holds BS and MS degrees in marine engineering and naval architecture respectively. He has also completed many graduate
暂无评论