Recently enacted public law and international treaties prohibit the discharge of oily wastes from oceangoing ships. To comply with these laws, the U.S. Navy and the Department of Defense (DOD) have issued a directive ...
详细信息
Recently enacted public law and international treaties prohibit the discharge of oily wastes from oceangoing ships. To comply with these laws, the U.S. Navy and the Department of Defense (DOD) have issued a directive implementing standards for the prevention of oil pollution from U.S. Navy ships. Because of unique equipment and system design requirements for combatant and auxiliary ships in the U.S. Navy, research and development (R&D) was initiated to develop oil/water separator (OWS) systems. Over the past ten years, three systems were developed that met the Navy's requirements and are currently installed aboard Navy ships. Recently, a new generation of oil/water separator was conceived. Using existing oil coalescing theory and equipment already in the fleet, an in-tank oil/water separator (ITOWS) was developed. This new separator, installed aboard a naval combatant for testing, has met or exceeded all system requirements. Following a satisfactory operational evaluation by an independent U.S. Navy test command, the ITOWS will be specified for installation aboard new U.S. Navy ships. This article reviews current U.S. Navy OWS designs and introduces the ITOWS system currently undergoing final evaluation.
作者:
DROPIK, MVgraduated from the University of Detroit in 1969 with a bachelor of science degree in mechanical engineering. He began his Navy career that year with the Naval Ship Systems Command
PMS-382 Ship Acquisition Manager for Mine Patrol and Yardcraft. In 1971 he transferred to the General Arrangements and Habitability Design Branch of the Naval Ship Engineering Center. From 1971–1972 he attended graduate school at the University of California at Berkeley through the Navy's long-term training program and received his master's degree in industrial engineering. He currently heads the Auxiliary/Amphibious/Minecraft/Special Projects Branch of NAVSEA's Arrangements Design Division. His duties in this capacity include those of program manager of the U.S. Navy's flammable liquids program a position which he has held for the last eight years. His experience encompasses the general arrangements habitability storeroom and office design of aviation auxiliary amphibious mine warfare and high performance ships and craft.
The uncontrolled proliferation of flammables and combustibles aboard ship, in addition to posing an obvious fire and explosive hazard, has seriously degraded the survivability and increased the vulnerability character...
详细信息
The uncontrolled proliferation of flammables and combustibles aboard ship, in addition to posing an obvious fire and explosive hazard, has seriously degraded the survivability and increased the vulnerability characteristics of U.S. Navy surface ships. This problem for the most part has been superficially attributed to a widespread shortage of flammable and combustible stowage capacity. As a result, current solutions have been limited to increasing stowage capacity through additional storerooms and development of more efficient stowage aids. Unfortunately, these solutions simply address the symptoms, are of a corrective nature, and do not eliminate the fundamental causes of the problem. The paper conducts a more systematic and comprehensive investigation into identifying and resolving the flammable liquids problem by considering it from a ship life cycle perspective. In this way, the problem is shown to be the resultant accumulation of a number of causes which occur during a ship's design, construction, and operational phases, and which collectively manifest themselves as a major shortage of flammable and combustible liquid stowage space aboard current fleet ships. Actions are then formulated to eliminate or counteract these fundamental causes, and validated by application to a hypothetical case study.
作者:
STIMSON, WAMARSH, MTUTTICH, RMWilliam A. Stimsonreceived his B.S. degree in mathematics from the University of Texas at El Paso in 1964
and his M.S. degree in engineering from the University of Santa Clara in 1971. He served in the U.S. Army Artillery during the Korean Conflict and subsequently was employed at IBM Huntsville Alabama until 1968 where he worked in the design of automatic control systems of the Saturn vehicle. From 1968 until 1971 he was employed at Ames Research Center Moffett Field in the design of nonlinear control systems for sounding rockets and pencil-shaped spacecraft. Following this Mr. Stimson worked at Hewlett Packard Sunnyvale California as a test engineer in automatic test systems. Since 1973 Mr. Stimson has been employed at the Naval Ship Weapon Systems Engineering Station Port Hueneme. He was a ship qualification trials project supervisor for many years and is now serving as master ordnance repair deputy program manager. Mr. Stimson is a member of the American Society of Naval Engineers and is program chairman of the Channel Islands Section. Cdr. Michael T. Marsh
USNreceived a B.S. in mathematics from the University of Nebraska and was commissioned via the NESEP program in 1970. He holds an M.S. in computer science from the U.S. Navy Postgraduate School and an MBA from the State University of New York. Cdr. Marsh has served in the weapons department of USSFrancis Hammond (FF-1067) and of USSJohn S. McCain (DDG-36). He was weapons officer aboard USSSampson (DDG-10). As an engineering duty officer Cdr. Marsh was the technical design officer for PMS-399 at the FFG-7 Class Combat System Test Center from 1978 to 1982. He is presently combat system officer at SupShip Jacksonville and has been active in the MOR program since its inception. Cdr. Marsh is also the vice chairman of the Jacksonville Section of ASNE. LCdr. Richard M. Uttich
USNholds B.S. and M.S. degrees in mechanical engineering from Stanford University. He enlisted in the Navy in 1965 serving as an electronics technician aboard USSNereus (A
The 600-ship United States Navy offers private shipyards an unprecedented opportunity for overhaul of surface combatants with complex combat systems. Recognizing the new challenge associated with the overhaul of high ...
详细信息
The 600-ship United States Navy offers private shipyards an unprecedented opportunity for overhaul of surface combatants with complex combat systems. Recognizing the new challenge associated with the overhaul of high technology combat systems in the private sector, the Navy in 1983 established the master ordnance repair (MOR) program. This program, a joint effort of the Naval Sea systems Command (NAVSEA) and the Shipbuilders Council of America (SCA), was designed to identify and qualify those companies and private shipyards technically capable of managing combat systems work and conducting combat system testing. Standard Item 009–67 describes the role of the MOR company in combat system overhaul. It defines terms that are important to understanding the item itself, and imposes upon the prime contractor an obligation to utilize the MOR subcontractor in a managerial capacity. Specific tasks are assigned to the MOR company in planning, production, and testing. Finally, this standard item describes to the Navy planner how to estimate the size of the MOR team appropriate to the work package, a feature that will ensure that combat system bids are tailored to a specific availability.
作者:
LANGSTON, MJPOOLE, JRLCDR. Marvin J. Langston
USN is presently located in a staff office to RAdm. Wayne E. Meyer USN deputy commander weapons and combat systems. Currently he is working to define battle force system engineering. Prior to that time he served as command & decision and Aegis display system computer program development manager for DDG-51 class development. He spent three years in St. Paul Minnesota as the NA VSEA technical representative working on DDG-993 class combat system testing DDG-2/15 class NTDS development and ACDS concept development. He served as assistant electronic maintenance officer on USS America CV-66. LCdr. Langston has prior enlisted service in nuclear power reactor operation and holds an MSEE from the Naval Postgraduate School and a BSEE from Purdue University. Capt. James R. Poole
USN (Ret.) is a 1957 graduate of the United States Naval Academy and has served in a variety of sea and shore billets during his 28 year naval career. Sea assignments included tours in destroyers submarines (conventional fleet and nuclear missile) logistic support ships and USS Norton Sound as commanding officer during at-sea evaluation of the Aegis EDM-1 weapon system. Shore tours at the U.S. Naval Postgraduate School staff COMSUBLANT Aegis Project Office and Aegis Techrep RCA Moorestown N.J. preceded his final active duty assignment as deputy for operations U.S. Naval Academy. Capt. Poole has been a designated WSAM since 1975. He is currently employed by Advanced Technology Incorporated.
作者:
STERN, HMETZGER, RHoward K. Stern:is presently vice president of Robotic Vision Systems
Inc. He received a bachelor of electrical engineering degree from College of the City of New York in 1960. Mr. Stern joined Dynell Electronics Corporation in 1971 and became part of the Robotic Vision Systems
Inc. staff at the time of its spin-off from Dynell. He was program manager of the various three-dimensional sensing and replication systems constructed by Dynell and Robotic Vision Systems. As program manager his responsibilities encompassed technical administrative and operational areas. The first two portrait sculpture studio systems and the first three replication systems built by Robotic Vision Systems Inc. were designed manufactured and operated under his direction. Before joining Dynell
Mr. Stern was a senior engineer at Instrument Systems Corporation and chief engineer of the Special Products Division of General Instrument Corporation. Prior to these positions Mr. Stern was chief engineer of Edo Commercial Corporation. At General Instrument and Edo Commercial he was responsible for the design and manufacture of military and commercial avionics equipment. Mr. Stern is presently responsible for directing the systems design and development for all of the company's programs.Robert J. Metzger:is currently engineering group leader at Robotic Vision Systems
Inc. He graduated summa cum laude from the Cooper Union in 1972 with a bachelor of electrical engineering degree. Under sponsorship of a National Science Foundation graduate fellowship he graduated from the Massachusetts Institute of Technology in 1974 with the degrees of electrical engineer and master of science (electrical engineering). In 1979 Mr. Metzger graduated from Polytechnic Institute of New York with the degree of master of science (computer science). Since 1974
Mr. Metzger has been actively engaged in the design of systems and software for noncontact threedimensional optical measurement for both military and commercial applications. Of particular note are his c
Ship's propellers are currently measured by manual procedures using pitchometers, templates and gauges. This measurement process is extremely tedious, labor intensive and time consuming. In an effort to provide in...
详细信息
Ship's propellers are currently measured by manual procedures using pitchometers, templates and gauges. This measurement process is extremely tedious, labor intensive and time consuming. In an effort to provide increased accuracy, repeatability and cost effectiveness in propeller manufacture, an automated propeller optical measurement system (APOMS) has been built which rapidly and automatically scans an entire ship's propeller using a 3-D vision sensor. This equipment is integrated with a propeller robotic automated templating system (PRATS) and the propeller optical finishing system (PROFS) which robotically template and grind the propeller to its final shape, using the APOMS-derived data for control feedback. The optical scanning and the final shape are both controlled by CAD/CAM data files describing the desired propeller shape. An automated propeller balancing system is incorporated into the PROFS equipment. The APOMS/PRATS/PROFS equipment is expected to provide lower propeller manufacturing costs.
作者:
DONOVAN, MRMATTSON, WSMichael R. Donovanis a 1974 graduate of the United States Naval Academy where he received his undergraduate degree in naval architecture. In 1975 he received a master of science degree in naval architecture and marine engineering from the Massachusetts Institute of Technology. After completing the Navy's nuclear power training program
he served as machinery division officer in USSBainbridge (CGN-25) and chemistry and radiological controls assistant in USSLong Beach (CGN-9). He successfully completed the Navy's surface warfare officer qualification and passed the nuclear engineer's examination administered by Naval Reactors. He was then assigned to the Ship Design and Engineering Directorate (SEA-05) Naval Sea Systems Command as head systems engineer on the DDG-51 ship design project where he received the Navy Commendation Medal for outstanding performance. He is currently with Solar Turbines Incorporated as manager ship integration and integrated logistic support for the Rankine cycle energy recovery (RACER) system. Mr. Donovan has lectured at Virginia Polytechnic Institute teaching marine engineering and has given presentations on ship design at various symposiums and section meetings for both ASNE and SNAME. He has been a member of ASNE and SNAME since 1972 and is registered as a professional engineer in California and Virginia. Wayne S. Mattsonreceived his B.S. degree in mechanical engineering from Western New England College in 1972. Following graduation
he attended Naval Officer Candidate School and was subsequently assigned as a project officer to COMOPTEVFOR where he was responsible for technical and operational test plans their execution and final equipment appraisal. Following a tour as engineering officer aboard the USSNespelen (AOG-55) he was assigned as commissioning MPA aboard the USSElliot (DD-967) the fifthSpruanceclass destroyer. For the past six years he has been employed by Solar Turbines Incorporated in program management within the advanced development department. He is currently
There is a great deal of emphasis currently in the Navy on the issues of reliability and maintainability. If a system or component is out of commission, it obviously cannot perform its mission. Thus, systems and compo...
详细信息
There is a great deal of emphasis currently in the Navy on the issues of reliability and maintainability. If a system or component is out of commission, it obviously cannot perform its mission. Thus, systems and components must be reliable, with low failure rates, and maintainable, with short repair times when the system does become inoperable. To be effective, these attributes must be incorporated into new ship systems early in the design stage. The Rankine cycle energy recovery (RACER) system is a heat recovery steam cycle designed to recover energy from the exhaust of an LM2500 gas turbine for augmentation of a ship's propulsion system. The RACER system provides several advantages to a gas turbine powered ship, one of which is improved fuel efficiency for significant annual fuel savings. This saving does not come free, however, since, in general, any additional system installed in the ship will have some maintenance requirements. In keeping with the Navy's current emphasis, a key philosophy in the design of the RACER system has been to minimize this maintenance burden. After a brief description of the RACER system and its design philosophy, the techniques being used during the design phase to minimize the maintenance burden on the fleet are presented. Trade-off studies concerning acquisition versus life-cycle costs, including fuel and maintenance costs, are discussed. Innovations incorporated into this state-of-the-art system are reviewed with an emphasis on design for affordability.
The unique physical construction and launch control system architecture of the MK 41 vertical launching system (VLS) makes it particularly adaptable to a variety of missiles and ship classes. The U.S. Navy began insta...
详细信息
The unique physical construction and launch control system architecture of the MK 41 vertical launching system (VLS) makes it particularly adaptable to a variety of missiles and ship classes. The U.S. Navy began installing the MK 41 VLS in deep draft combatants early this year. System attributes such as increased firepower, reduced manning and training requirements, high reliability and low maintainability indicate the MK 41 will best answer the fleet's requirement for highly capable launchers at minimum life cycle cost. Several launcher variants can be readily configured from MK 41 launcher components. Two lengths have been developed and proved during land based and at-sea tests. These MK 41 derivatives retain all the benefits of the VLS while permitting a tailored defense capability throughout the surface fleet.
Air cushion vehicles (ACVs) have operated successfully on commercial routes for about twenty years. The routes are normally quite short; the craft are equipped with radar and radio navigation aids and maintain continu...
详细信息
Air cushion vehicles (ACVs) have operated successfully on commercial routes for about twenty years. The routes are normally quite short; the craft are equipped with radar and radio navigation aids and maintain continuous contact with their terminals. Navigation of these craft, therefore, does not present any unusual difficulty. The introduction of air cushion vehicles into military service, however, can present a very different picture, especially when external navigation aids are not available and the craft must navigate by dead reckoning. This paper considers the problems involved when navigating a high-speed air cushion vehicle by dead reckoning in conditions of poor visibility. A method is presented to assess the ACV's navigational capability under these circumstances. A figure of merit is used to determine the sensitivity of factors which affect navigation such as the range of visibility, point-to-point distance, speed, turning radius and accuracy of onboard equipment. The method provides simplistic but adequate answers and can be used effectively to compare the-capability and cost of alternative navigation concepts.
A turning point occurred in naval engineering in 1972 when the U.S. N avy chose to use marine gas turbines for the propulsion of its new SPRUANCE and PERRY Class ships. This paper reviews the more than twenty years of...
A turning point occurred in naval engineering in 1972 when the U.S. N avy chose to use marine gas turbines for the propulsion of its new SPRUANCE and PERRY Class ships. This paper reviews the more than twenty years of experience with turbine technology and its design integration into combat ships needed to make that decision. It is concluded that the availability of a good second generation aircraft derivative engine with proven reliability and a strong commercial base, i.e., the LM-2500, was as important to the decision as was the predicted improved ship effectiveness and cost benefits. This paper discusses improvements that can be made to the twin engine, single gear, single propeller shaft system. Focusing only on this mechanical transmission concept, it addresses the impact of possible improvements to the engine, gear, and shafting. In particular, the paper discusses current LM-2500 related R&D efforts to: (a) obtain improved part-power fuel rates, (b) integrate with a reversing reduction gear, and (c) add on a waste heat recovery steam cycle. Looking ahead to the year 2000, this paper suggests that a successor to the ubiquitous LM-2500 will appear in the 15 MW power range to provide the next step in the evolution of the twin engine package. This new naval engine will most likely be based on an aircraft core that exists at present, such that it will have demonstrated its reliability and commercial potential through many hours of testing prior to its mid-1990 marine conversion. This new engine is expected to offer improved air flow, an excellent fuel rate (approaching a flat 0.30 LB/HP-HR), and effective maintenance monitoring, all at some expense in size, weight, and cost. The year 2000 engine will burn a liquid hydrocarbon fuel similar to JP-5 because of its aircraft origins. Combined with advances in gear and shafting technology, the full twin engine propulsion system of the year 2000 should be markedly lighter, smaller, and more efficient than today's units.
作者:
DETOLLA, JPFLEMING, JRJoseph DeTolla:is a ship systems engineer in the Ship Systems Engineering Division
SEA 56D5 at the Naval Sea Systems Command. His career with the Navy started in 1965 at the Philadelphia Naval Shipyard Design Division. In 1971 he transferred to the Naval Ship Engineering Center. He has held positions as a fluid systems design engineer and auxiliary systems design integration engineer. Mr. DeTolla has worked extensively in the synthesis and analysis of total energy systems notably the design development of the FFG-7 class waste heat recovery system. He is NA VSEA's machinery group computer supported design project coordinator and is managing the development of a machinery systems data base load forecasting algorithms and design analysis computer programs. Mr. DeTolla has a bachelor of science degree in mechanical engineering from Drexel University and a master of engineering administration degree from George Washington University. He is a registered professional engineer in the District of Columbia and has written several technical papers on waste heat recovery and energy conservation. Jeffrey Fleming:is a senior project engineer in the Energy R&D Office at the David Taylor Naval Ship R&D Center. In his current position as group leader for the future fleet energy conservation portion of the Navy's energy R&D program
he is responsible for the identification and development of advanced components and subsystems which will lead to reductions in the fossil fuel consumption of future ships. Over the past several years he has also directed the development and application of total energy computer analysis techniques for the assessment of conventional and advanced shipboard machinery concepts. Mr. Fleming is a 1971 graduate electrical engineer of Virginia Polytechnic Institute and received his MS in electrical engineering from Johns Hopkins University in 1975. Mr. Fleming has authored various technical publications and was the recipient of the Severn Technical Society's “Best Technical Paper of the Year” award in 1
In support of the Navy's efforts to improve the energy usage of future ships and thereby to reduce fleet operating costs, a large scale computer model has been developed by the David Taylor Naval Ship Research and...
In support of the Navy's efforts to improve the energy usage of future ships and thereby to reduce fleet operating costs, a large scale computer model has been developed by the David Taylor Naval Ship Research and Development Center (DTNSRDC) to analyze the performance of shipboard energy systems for applications other than nuclear or oil-fired steam propulsion plants. This paper discusses the applications and utility of this computerprogram as a performance analysis tool for design of ship machinery systems. The program is a simulation model that performs a complete thermodynamic analysis of a user-specified energy system. It offers considerable flexibility in analyzing a variety of propulsion, electrical, and auxiliary plant configurations through a component building block structure. Component subroutines that model the performance of shipboard equipment such as engines, boilers, generators, and compressors are available from the program library. Component subroutines are selected and linked in the program to model the desired machinery plant functional configurations. The operation of the defined shipboard energy system may then be simulated over a user-specified scenario of temperature, time, and load profiles. The program output furnishes information on component operating characteristics and fuel demands, which allows evaluation of the total system performance.
暂无评论