Since the signing of the Contract Design Plane for the CVN 68 (the U.S. Navy's latest Class of Aircraft Carriers) In 1963, considerable technological advances have been made in Naval Ship Design. This paper provid...
Since the signing of the Contract Design Plane for the CVN 68 (the U.S. Navy's latest Class of Aircraft Carriers) In 1963, considerable technological advances have been made in Naval Ship Design. This paper provides specific examples of how new technology has affected traditional Carrier design practices and techniques, and also indicates areas where future advanced technology will be needed. It is divided into four sections: 1) Computer Design Application; 2) Total Ship Energy Conservation Analysis; 3) Advances in Structural Design; and 4) Impact of V/STOL Aircraft. The increased use of the computer to define ship characteristics in the initial stage of ship design is discussed, followed by a report on efforts to include energy conservation as an integral part of the design process. The energy conservation approach uses traditional analytical techniques to develop innovative design configurations that will achieve energy savings. Of the many advances in Carrier structural design, two specific examples are given: 1) Elimination of the infamous “knee-knockers” (high sills in passageway openings) common to Gallery Deck structure, and 2) Successful attempts at reducing the thickness of aircraft elevator platforms. The paper concludes by pointing out some possible challenges facing the ship designer and some of the technology already created by the expected introduction of advanced design Vertical/Short Takeoff and Landing (V/STOL) aircraft.
The MK 92 Fire control System (FCS) & a new, integrated, highly reliable and light-weight U.S. Navy Fire control System for missile and gun control. This system, which is in production for the FFG, PCG, PGG and PH...
The MK 92 Fire control System (FCS) & a new, integrated, highly reliable and light-weight U.S. Navy Fire control System for missile and gun control. This system, which is in production for the FFG, PCG, PGG and PHM Ship Classes, provides the detection and automation required for modern naval warfare. Search radar data & presented at a very high rate at the operator's console, a highly integrated man-machine interface. Utilization of monopulse and “track-while-scan” techniques result in multiple target tracking capability. The system console(s) offer a self-contained command and control capability and, in addition, standard digital computer channels provide the versatile interface with the ship's command and control, integrating the complete engagement process. Error cancellation techniques are employed to obtain high performance accuracy even under severe environmental conditions. The low manning requirement for both operation and maintenance is a key system attribute for all applications. Comprehensive “at-sea” evaluations, performed by the U.S. Navy, demonstrated successful system operation in all modes of surveillance, multi-target tracking and simultaneous missile and gun engagements. The “at-sea” performance record of the FCS MK 92 was cited by the Chief of Naval Operations to have established new standards for Naval Surface Weapons systems.
作者:
MARCY, HTThe Honorable H. Tyler (“Ty”) Marcy:was born in 1918 in Rochester
New York but moved to Baltimore Maryland at an early age where he attended public schools. He is a graduate of the Massachusetts Institute of Technology from which he received both his BS and MS degrees in Electrical Engineering. Subsequent to receiving the latter degree in 1941 he designed and developed gun control systems in the MIT Servomechanism Laboratory until 1946 when he became Associate Director Special Projects Department M. W. Kellogg Company and worked on rocket engine development missile controls and analog air defense systems. In 1951
Mr. Marcy left Kellogg Company to join the IBM Corporation where he remained until 1972 and was employed in various engineering and managerial positions. At IBM his first assignment concerned the bomb/navigational system for the B-52 aircraft. He then moved into commercial development of data processing machines and peripheral devices subsequently being placed in a series of technical management positions which included Assistant Manager of Product Development Corporate Headquarters New York (1956) Manager
Poughkeepsie N.Y. Laboratory (1957) Vice-President
General Products Division (1962) Vice-President
Systems Development Division (1965) and Director of Technology
Corporate Headquarters Armonk N. Y. (1968). His last position was held until 1972 when he left IBM to do private consulting work in engineering management technology and program review. In October 1974 he was appointed by the President to his present office as Assistant Secretary of the Navy for Research and Development. Mr. Marcy has been a member of the Instrument Society of America since 1963
serving as its President from 1971 until 1974. In 1967 he became a Fellow of the Institute of Electrical and Electronic Engineers (IEEE) for his leadership in feedback control and for his significant contribution to the management of technical enterprise. In addition to these professional organizations he is also a member of the
作者:
Birnbaum, L.S.Bukzin, E.A.Saroyan, J.R.Leon S. Birnbaum holds a B.S. degree in Chemistry from City College of New York. He has completed graduate work in Chemistry at the University of Maryland and Temple University
and in Technology and Management at American University. He has been with the Navy Department Washington since 1949 and is currently Head of the Coatings and Chemistry Branch of the Materials Development and Application Office of the Naval Ship Engineering Center. Responsibilities of this Branch include such items as coatings corrosion control techniques insulation chemical cleaning water treatment toxicology and detection and decontamination of biological and chemical warfare agents. Prior to this Mr. Birnbaum was employed in the Industrial Test Laboratory Philadelphia Naval Shipyard from 1938 to 1949. Work during this period included supervision of a section which inspected paints and allied materials and petroleum products to determine their suitability for Naval use and direction of research in fire retardant treatments. He is a member of the American Chemical Society
Washington Paint Technical Group. National Association of Corrosion Engineers and the American Society of Naval Engineers. Mr. Bukzin is a research and development program manager in the Naval Ship Systems Command of the Department of the Navy in the fields of non-metallic materials
fuels lubricants cold weather operations and several other areas. He is a graduate chemical engineer from New York University with additional training in naval architecture and management which culminated in his participation in the Senior Development Program at Cornell University during the summer of 1960. He has been employed by the Command and its predecessor for the past 2b years and has been in his present position of R&D planning and programming for the past six years. Prior to that his major technical responsibilities were in the field of elastomers and their applications. He received several awards and published a number of papers during those years. Mr. Bukzin is a me
Report on paints used on surface ships and submarines for protection against corrosion and prevention of fouling, and on work connected with development and evaluation of such coatings;experiences with "hot plast...
详细信息
Report on paints used on surface ships and submarines for protection against corrosion and prevention of fouling, and on work connected with development and evaluation of such coatings;experiences with "hot plastic", "cold plastic" and vinyl paints;hazards in use of vinyl paints and safety precautions;test techniques;new toxics (which are only kind so far satisfactory antifouling formulations) under test.
作者:
HARRAHY, DJPOWELL, RILUTZ, RTHE AUTHOR:Mr. Donald J. Harrahy has eleven years of engineering experience
of which the past six years have been specifically in reliability/maintainability engineering or related product assurance activities in a managerial capacity. After five years as an equipment engineer at Western Electric Mr. Harrahy joined Raytheon in 1962 as a reliability engineer and group head and in January 1966 was appointed Product Assurance Manager of the Nike-X programs at Raytheon's Wayland Laboratory. In February 1967 he was appointed to his present position of Manager System Reliability/Maintainability Engineering at Wayland. Mr. Harrahy has had considerable experience in applying system reliability analysis and operations research techniques to the solution of system design and design tradeoff problems. He holds B.S. and M.S. degrees from Lowell Technological Institute and Northeastern University respectively. He currently teaches a two-course series in System Reliability Engineering Techniques as a part of Northeastern University's Professional State-Of-The-Art course program for engineers in their Center for Continuing Education. A registered professional engineer in the state of Massachusetts Mr. Harrahy is the co-author of the papers “Effects of Failure on Phased Array Radar Systems” and “Inventory Control Models for Logistics Planning and Operational Readiness with Cost Constraints.” He is a member of NSPE ASME and IEEE. Mr. Harrahy is co-chairman of the Boston Section IEEE Reliability Group's Education Committee and has organized and lectured in courses on reliability and maintainability engineering sponsored by the Boston Section IEEE. Robert Ingram Powell was born in San Diego
California on 24 August 1923. He served with Naval Communications Intelligence OP-20-G during World War II and as an officer with Army Security Agency Intelligence Branch during the Korean War. Mr. Powell worked as a Chief Engineer for Industry and U. S. Government organizations for over twenty years including U. S. Army U. S. Air
Dynamic walking on bipedal robots has evolved from an idea in science fiction to a practical reality. This is due to continued progress in three key areas: a mathematical understanding of locomotion, the computational...
Dynamic walking on bipedal robots has evolved from an idea in science fiction to a practical reality. This is due to continued progress in three key areas: a mathematical understanding of locomotion, the computational ability to encode this mathematics through optimization, and the hardware capable of realizing this understanding in practice. In this context, this review outlines the end-to-end process of methods that have proven effective in the literature for achieving dynamic walking on bipedal robots. We begin by introducing mathematical models of locomotion, from reduced-order models that capture essential walking behaviors to hybrid dynamical systems that encode the full-order continuous dynamics along with discrete foot-strike dynamics. These models form the basis for gait generation via (nonlinear) optimization problems. Finally, models and their generated gaits merge in the context of real-time control, wherein walking behaviors are translated to hardware. The concepts presented are illustrated throughout in simulation, and experimental instantiations on multiple walking platforms are highlighted to demonstrate the ability to realize dynamic walking on bipedal robots that is both agile and efficient.
暂无评论