咨询与建议

限定检索结果

文献类型

  • 92 篇 会议
  • 52 篇 期刊文献

馆藏范围

  • 144 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 65 篇 理学
    • 49 篇 物理学
    • 9 篇 数学
    • 6 篇 生物学
    • 5 篇 化学
    • 4 篇 统计学(可授理学、...
    • 2 篇 地球物理学
    • 2 篇 系统科学
  • 65 篇 工学
    • 30 篇 电气工程
    • 28 篇 计算机科学与技术...
    • 23 篇 软件工程
    • 10 篇 动力工程及工程热...
    • 9 篇 核科学与技术
    • 8 篇 信息与通信工程
    • 6 篇 电子科学与技术(可...
    • 6 篇 控制科学与工程
    • 6 篇 生物工程
    • 5 篇 机械工程
    • 5 篇 化学工程与技术
    • 5 篇 环境科学与工程(可...
    • 5 篇 安全科学与工程
    • 3 篇 仪器科学与技术
    • 3 篇 材料科学与工程(可...
    • 2 篇 力学(可授工学、理...
    • 2 篇 光学工程
    • 2 篇 水利工程
  • 14 篇 管理学
    • 8 篇 管理科学与工程(可...
    • 5 篇 图书情报与档案管...
    • 4 篇 工商管理
  • 4 篇 法学
    • 3 篇 社会学
  • 2 篇 经济学
    • 2 篇 应用经济学
  • 1 篇 文学

主题

  • 7 篇 higgs bosons
  • 6 篇 supersymmetric m...
  • 6 篇 particle data an...
  • 5 篇 graph database
  • 5 篇 supersymmetry
  • 5 篇 hadron colliders
  • 5 篇 top quark
  • 4 篇 electroweak inte...
  • 4 篇 accuracy
  • 4 篇 data models
  • 4 篇 renewable energy...
  • 4 篇 quark & gluon je...
  • 3 篇 power grids
  • 3 篇 hadron-hadron in...
  • 3 篇 quantum chromody...
  • 3 篇 spontaneous symm...
  • 3 篇 hypothetical par...
  • 3 篇 superpartners
  • 3 篇 risk management
  • 3 篇 perturbative qcd

机构

  • 40 篇 department of ph...
  • 40 篇 faculty of scien...
  • 40 篇 departamento de ...
  • 40 篇 department for p...
  • 40 篇 department of ph...
  • 40 篇 yerevan physics ...
  • 40 篇 institute of phy...
  • 40 篇 institute of phy...
  • 40 篇 department of ph...
  • 40 篇 physics departme...
  • 39 篇 dipartimento di ...
  • 39 篇 kirchhoff-instit...
  • 39 篇 graduate school ...
  • 39 篇 instituto de fís...
  • 38 篇 fakultät für phy...
  • 38 篇 tomsk state univ...
  • 38 篇 dipartimento di ...
  • 37 篇 department of ph...
  • 37 篇 department of ph...
  • 37 篇 department of ph...

作者

  • 32 篇 c. alexa
  • 32 篇 j. m. izen
  • 32 篇 s. veneziano
  • 32 篇 g. bella
  • 32 篇 j. strandberg
  • 32 篇 d. calvet
  • 32 篇 c. amelung
  • 32 篇 n. orlando
  • 32 篇 h. a. gordon
  • 32 篇 y. tayalati
  • 32 篇 g. spigo
  • 32 篇 v. chiarella
  • 32 篇 f. siegert
  • 32 篇 a. c. könig
  • 32 篇 m. klein
  • 32 篇 r. ströhmer
  • 32 篇 h. sakamoto
  • 32 篇 g. h. a. viehhau...
  • 32 篇 s. nektarijevic
  • 32 篇 m. rijssenbeek

语言

  • 139 篇 英文
  • 3 篇 其他
  • 2 篇 中文
检索条件"机构=Grid Laboratory of Grid Advanced Computing and Applications"
144 条 记 录,以下是51-60 订阅
排序:
Research on LLM Method for Knowledge-Assisted Generation of Power Standards
Renewable Energy and Power Quality Journal
收藏 引用
Renewable Energy and Power Quality Journal 2024年 第6期22卷 168-178页
作者: Fan, Xiaoxuan Zhang, Sai Liang, Xiao Wang, Zhihao Peng, Tao State Grid Laboratory of Grid Advanced Computing and Applications China Electric Power Research Institute Co. Ltd Beijing China State Grid Jiangsu Electric Power Co. Ltd Nanjing China
With the rapid development of large language models, their application in various industries is becoming more and more common, especially in the power sector. Electricity power standard knowledge, as an industry speci... 详细信息
来源: 评论
Topology Identification of Distribution Networks Using Multi-Object Binary Classification Graph Transformer
Topology Identification of Distribution Networks Using Multi...
收藏 引用
IEEE Conference on Energy Internet and Energy System Integration (EI2)
作者: Siyan Liu Danni Shi State Grid Laboratory of Grid Advanced Computing and Applications State Grid Smart Grid Research Institute Co. Ltd. Beijing China
With the continuous increase of renewable energy, the distribution network's structure tends to be more complex. The real-time topology is difficult to obtain timely and the topol-ogy categories increases exponent...
来源: 评论
Guest Editorial: Special issue on computational methods and artificial intelligence applications in low-carbon energy systems
收藏 引用
IET Renewable Power Generation 2024年 第3期18卷 303-305页
作者: Wang, Yishen Zhou, Fei Guerrero, Josep M. Baker, Kyri Chen, Yize Wang, Hao Xu, Bolun Xu, Qianwen Zhu, Hong Agwan, Utkarsha State Grid Laboratory of Grid Advanced Computing and Applications State Grid Smart Grid Research Institute Co. Ltd. Beijing China Department of Energy Technology Aalborg University Aalborg Denmark Department of Civil Environmental and Architectural Engineering University of Colorado-Boulder BoulderCO United States Guangzhou China Department of Data Science and AI Monash University ClaytonVIC Australia Department of Earth and Environmental Engineering Columbia University New YorkNY United States Electric Power and Energy Systems Division KTH Royal Institute of Technology Stockholm Sweden State Grid Jiangsu Electric Power Co. Ltd. Nanjing China Department of Electrical Engineering and Computer Sciences University of California - Berkeley BerkeleyCA United States
来源: 评论
Fast Cross-Modality Knowledge Transfer via a Contextual Autoencoder Transformation
Fast Cross-Modality Knowledge Transfer via a Contextual Auto...
收藏 引用
International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
作者: Min Zheng Chunpeng Wu Yue Wang Yantao Jia Weiwei Liu Long Lin Shuai Chen Fei Zhou State Grid Laboratory of Grid Advanced Computing and Applications State Grid Smart Grid Research Institute Co. Ltd. Beijing China Huawei Technologies Co. Ltd Beijing China
Cross-modality knowledge transfer aims to apply knowledge learned in the source modality to the target modality. It is more challenging than the general knowledge transfer task because of the aggravated modality shift...
来源: 评论
An Active Learning Model Production Method for Electric Power Inspection Image Multi-target Detection
An Active Learning Model Production Method for Electric Powe...
收藏 引用
IEEE Information Technology and Mechatronics Engineering Conference (ITOEC)
作者: Jiangqi Chen Bo Wang Xi Zhang Kunlun Gao Peng Wu State Grid Laboratory of Grid Advanced Computing and Applications Beijing China State Grid Smart Grid Research Institute Co. Ltd Beijing China
With the development of intelligent electric power inspection technology, electric power companies use UAVs, cameras, robots and other equipment for power transmission line inspections, and take a large number of insp...
来源: 评论
Analysis and optimization of sparse LU factorization of power matrix based on GLU
Analysis and optimization of sparse LU factorization of powe...
收藏 引用
12th International Conference on Renewable Power Generation (RPG 2023)
作者: C. Shi L. Lin H. Yang S. Wang State Grid Laboratory of Grid Advanced Computing and Applications State Grid Smart Grid Research Institute co.Ltd Beijing People's Republic of China
With the continuous improvement of power grid stability and reliability requirements, improving the efficiency and accuracy of power system simulation has become an important research topic. The sparse LU factorizatio...
来源: 评论
An Aggregation Strategy of Flexible Industrial Load Based on K-Means Clustering
An Aggregation Strategy of Flexible Industrial Load Based on...
收藏 引用
China International Electrical and Energy Conference (CIEEC)
作者: Shuya Lei Wensi Zhang Yishen Wang Zhiqing Sun Mohan Liu Mingjian Cui State Grid Laboratory of Grid Advanced Computing and Applications State Grid Smart Grid Research Institute Co. Ltd. Beijing China State Grid Hangzhou Power Supply Company Hangzhou China School of Electrical and Information Engineering Tianjin University Tianjin China
In response to the “carbon peaking and carbon neutrality” goals, the energy structure in China has undergone a great transformation. Construction of the new power system has begun. The proportion of renewable genera... 详细信息
来源: 评论
A Fast Belief Propagation-Based Distributed Gauss– Newton Method for Power System State Estimation
A Fast Belief Propagation-Based Distributed Gauss– Newton M...
收藏 引用
IEEE International Conference on Cloud computing and Big Data Analysis (ICCCBDA)
作者: Peng Guo Danni Shi Xuan Wang Xinghua Shi State Grid Laboratory of Grid Advanced Computing and Applications State Grid Smart Grid Research Institute Co. Ltd Beijing China State Grid Zhejiang Eletric Power Co. Ltd Zhejiang China
State estimation is the foundation for a variety of online power system applications in energy management systems, and the stability of power systems is directly impacted by the speed with which current system states ...
来源: 评论
Research on Capacity Configuration Optimization of Multi-Energy Complementary System Using Deep Reinforce Learning
Research on Capacity Configuration Optimization of Multi-Ene...
收藏 引用
IEEE International Conference on Power and Energy Systems (ICPES)
作者: Zhuang Tang Bo Chai Jie Li Yishen Wang Siyan Liu Xinghua Shi State Grid Laboratory of Grid Advanced Computing and Applications State Grid Smart Grid Research Institute Co. Ltd Beijing China State Grid Zhejiang Eletric Power Co. Ltd Hangzhou China
The output power of wind, solar, and hydro energy in a multi-energy complementary system (MECS) with the heating system exhibits certain fluctuations. Gas power generation and battery can reduce these problems. Howeve...
来源: 评论
Graph computing applications In Unit Commitment Historical Data Management
Graph Computing Applications In Unit Commitment Historical D...
收藏 引用
Sustainable Power and Energy Conference (iSPEC)
作者: Yishen Wang Fei Zhou Hong Zhu Siyan Liu Zhuang Tang He Yang State Grid Laboratory of Grid Advanced Computing and Applications Beijing China State Grid Smart Grid Research Institute Co. Ltd Beijing China State Grid Jiangsu Electric Power Co. Ltd Nanjing China
The development of new types of power systems poses several key challenges for super-large-scale online analysis and optimization. These challenges include data merging, computation performance, and operation optimiza...
来源: 评论