A surgical intervention raises additional requirements to a medical device network, be it security concerns or the demand for just-in-time integration of an additional devices. The German national flagship project ***...
详细信息
ISBN:
(纸本)9781424492695
A surgical intervention raises additional requirements to a medical device network, be it security concerns or the demand for just-in-time integration of an additional devices. The German national flagship project *** aims to satisfy these requirements by defining, implementing and validating an integration solution for safe and dynamic networking. This work presents an approach to incorporate imaging related medical devices into a dynamic plug and play operating room (OR) network utilizing the existing Digital Imaging and Communications in Medicine (DICOM) protocol. The presented approach was created as part of the *** project to realize the integration of DICOM devices into the developed infrastructure, both in regard to newly created DICOM devices with direct support of the *** protocol and the integration of existing DICOM devices (e.g. image archives) employing a gateway. Preliminary evaluation results indicate that the approach is viable and that no critical transmission delays are introduced by the prototypical gateway implementation.
Improving service quality is critically important in hospital environments. Given the unpredictable nature of patient arrivals and types of treatments required, improving the service quality of Outpatient Service Syst...
详细信息
Factory managers have expressed the vision that consolidating all the operations management of a fab in a central location will greatly facilitate control and coordination and lead to a significant improvement in fact...
详细信息
A prototype concurrent engineering tool has been developed for the preliminary design of composite topside structures for modern navy warships. This tool, named GELS for the Concurrent Engineering of Layered Structure...
详细信息
A prototype concurrent engineering tool has been developed for the preliminary design of composite topside structures for modern navy warships. This tool, named GELS for the Concurrent Engineering of Layered Structures, provides designers with an immediate assessment of the impacts of their decisions on several disciplines which are important to the performance of a modern naval topside structure, including electromagnetic interference effects (EMI), radar cross section (RCS), structural integrity, cost, and weight. Preliminary analysis modules in each of these disciplines are integrated to operate from a common set of design variables and a common materials database. Performance in each discipline and an overall fitness function for the concept are then evaluated. A graphical user interface (GUI) is used to define requirements and to display the results from the technical analysis modules. Optimization techniques, including feasible sequential quadratic programming (FSQP) and exhaustive search are used to modify the design variables to satisfy all requirements simultaneously. The development of this tool, the technical modules, and their integration are discussed noting the decisions and compromises required to develop and integrate the modules into a prototype conceptual design tool.
作者:
LUEDEKE, GFARNHAM, RBJR.George Luedeke
Jr.: received his BS degree in Mechanical Engineering from Massachusetts Institute of Technology and his MS degree in Product Design from Illinois Institute of Technology. Early in his career Mr. Luedeke joined General Motors Corporation as a designer responsible for development of people mover and rail rapid transit systems. From 1964 to 1974 he was with Hughes Aircraft Company. At Hughes he performed analyses and developed designs for a wide variety of program and proposal efforts such as: High Speed Ground Transportation (DOT) Task Force Command Center (NAVY) Panama Canal Marine Traffic Control Center (Panama Canal Co.) Royal Iranian Navy Command Center (Iran) Tactical Information Processing and Interpretation Center (Air Force) and WALLEYE CONDOR and PHOENIX Missile Systems (NAVY). He also had marketing development responsibilities related to the diversification of Hughes resources in civil business areas such as: Automatic train control (WMATA BARTD SCRTD) water/sewage treatment plant automation (Santa Clara County) Aqueduct Control (SWR) Hydrometeorological data collection (BPA WMO) and Salton Sea basin systems analysis (Dept. of the Interior). He was responsible for combat system integration for the Hughes 2000T Surface Effect Ship (SES) proposal. He also conducted detailed studies concerning ship flexure for the Improved Point Defense Target Acquisition System Program and for the definition of operational High Energy Laser weapon installations on a series of conventional monohulls (DLG DD and CVN). Since 1974 Mr. Luedeke has been employed at RMI Inc. (formerly Rohr Marine Inc.). During this time he has held several positions. His responsibilities have included directing a number of studies on advanced SES concepts managing activities defining mission/cost effectiveness of military and commercial SES's including defining the operational benefits and enhanced survivability characteristics of cargo SES's for high speed military sealiftfor NA TO and Southeast Asia
This paper will present the results of a marketing, engineering, and economic analysis of advanced marine vehicles done by IMA Resources, Inc. and RMI, Inc., in support of a Maritime Administration project to study “...
This paper will present the results of a marketing, engineering, and economic analysis of advanced marine vehicles done by IMA Resources, Inc. and RMI, Inc., in support of a Maritime Administration project to study “Multimode Express Shipping”. The study was conducted in 1981 and examined the economic benefits of using advanced marine vehicles as express cargo vessels in domestic and international service. Commodity characteristics, desirable express carrier rates, and potential high payoff service and route alternatives were identified. Advanced marine vehicles were surveyed and sized to meet desirable deadweight and block speed objectives. The costs of operating these craft on a variety of trade routes were calculated using an advanced marine vehicle economic analysis program. Revenues, expenses, break-even, profit and loss, cash flow requirements, tax summary and economic indicators (i.e., cost/ton – mile, etc.) were projected over the expected life of the vehicles as was return on investment. Traffic density and market penetration considerations narrowed the field of choice to smaller sized advanced marine vehicle carriers (i.e., 50 and 250 ton deadweight) and to three international and five domestic routes.
作者:
MELLIS, JGPLATO, AIREIN, RJJames G. Mellis:attended Central Institute in Kansas City
Mo. where he graduated in Electronic Engineering Technology. He later attended the University of Minn. in Minneapolis. At present he works in the Manning and Controls Integration Section of the Naval Sea Systems Command. Mr. Mellis is responsible for developing manpower requirements for ship design and for the coordination of shipboard automation designs with the U.S. Navy's manpower policies and availability. Mr. Mellis is currently developing manpower requirements for the U.S. Navy's DDGX ship design. In this capacity he has examined proposals for shipboard manpower reductions through the use of automation and remote control techniques. Another project where Mr. Mellis is heavily engaged in is the Ship Systems Engineering Standards (SSES) development. Mr. Mellis is the assistant project manager for the test and evaluation and producibility aspects of the SSES project. Previously prior to his employment with NAVSEA Mr. Mellis worked for General Dynamics/Electronic Division as a Senior Field Engineer on the Apollo Instrumentation Ships (i.e. Vanguard Restone Mercury). He was responsible for Central Data Processing Systems on the three ships. Artis I. Plato:is the Head of the Manning and Controls Integration Section of the Naval Sea Systems Command (NAVSEA). He is responsible for the development of accurate manpower requirements for all new construction and major overhaul ship projects for the U.S. NAVY. In addition
Mr. Plato must coordinate shipboard controls integration and automation aspects with manpower requirements to insure that a compatible solution is developed. Mr. Plato began his professional career in 1956 at the New York Naval Shipyard. There
he worked in the Internal Combustion Engine and Shipboard Elevator Section. During 1957 and 1958 he was called up for active duty with the U.S. Army Corps of Engineers. He served in Europe with various Construction Engineers units. After release from active duty he returned to the shipyard. In 19
This paper examines the recent experience in the UNITED STATES NAVY where automation has been introduced into new ship designs. While other attributes are recognized in the introduction of automated shipboard systems,...
This paper examines the recent experience in the UNITED STATES NAVY where automation has been introduced into new ship designs. While other attributes are recognized in the introduction of automated shipboard systems, such as the ability to respond more quickly in combat situations, this paper focuses on the effects of automation upon ship manpower requirements. Specific examples show that expected reductions in manning were not achieved in recent ship designs where automation was incorporated for that purpose. While the use of shipboard automation is not without its critics, the U.S. Fleet appears to have accepted the concept. User feedback addresses the issues of reliability, the provisions for backup systems, the need for better qualified personnel and the concern about maintenance workload. The authors provide specific recommendations for improved guidance to ship designers to more effectively apply automation in the ship design process.
暂无评论