咨询与建议

限定检索结果

文献类型

  • 32 篇 期刊文献
  • 18 篇 会议

馆藏范围

  • 50 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 35 篇 工学
    • 27 篇 计算机科学与技术...
    • 22 篇 软件工程
    • 14 篇 信息与通信工程
    • 11 篇 生物工程
    • 7 篇 电气工程
    • 7 篇 控制科学与工程
    • 6 篇 电子科学与技术(可...
    • 3 篇 建筑学
    • 3 篇 土木工程
    • 3 篇 测绘科学与技术
    • 3 篇 网络空间安全
    • 2 篇 光学工程
    • 2 篇 化学工程与技术
    • 1 篇 机械工程
    • 1 篇 仪器科学与技术
    • 1 篇 材料科学与工程(可...
    • 1 篇 水利工程
    • 1 篇 纺织科学与工程
    • 1 篇 航空宇航科学与技...
    • 1 篇 农业工程
  • 19 篇 理学
    • 11 篇 生物学
    • 9 篇 数学
    • 5 篇 物理学
    • 4 篇 统计学(可授理学、...
    • 1 篇 化学
    • 1 篇 大气科学
  • 13 篇 管理学
    • 8 篇 管理科学与工程(可...
    • 5 篇 图书情报与档案管...
  • 1 篇 经济学
    • 1 篇 应用经济学
  • 1 篇 农学
    • 1 篇 作物学

主题

  • 3 篇 deep neural netw...
  • 3 篇 feature extracti...
  • 3 篇 training
  • 2 篇 image fusion
  • 2 篇 noise reduction
  • 2 篇 reinforcement le...
  • 2 篇 bridges
  • 2 篇 signal processin...
  • 2 篇 image restoratio...
  • 2 篇 speech processin...
  • 2 篇 speech enhanceme...
  • 2 篇 robots
  • 2 篇 diffusion proces...
  • 2 篇 computational mo...
  • 2 篇 visualization
  • 2 篇 semantics
  • 2 篇 accuracy
  • 2 篇 visual languages
  • 1 篇 cross-species
  • 1 篇 image enhancemen...

机构

  • 31 篇 peng cheng labor...
  • 20 篇 guangdong key la...
  • 14 篇 sun yat-sen univ...
  • 8 篇 guangdong key la...
  • 7 篇 guangdong-hong k...
  • 5 篇 shenzhen institu...
  • 4 篇 key lab. of inte...
  • 4 篇 school of comput...
  • 4 篇 college of elect...
  • 4 篇 key laboratory o...
  • 4 篇 school of comput...
  • 3 篇 college of elect...
  • 3 篇 school of cyber ...
  • 2 篇 college of compu...
  • 2 篇 department of co...
  • 2 篇 institute of inf...
  • 2 篇 shenzhen campus ...
  • 2 篇 the university o...
  • 2 篇 school of comput...
  • 2 篇 shenzhen key lab...

作者

  • 7 篇 li guanbin
  • 6 篇 huang qingming
  • 6 篇 lin liang
  • 6 篇 xu qianqian
  • 5 篇 zhou fei
  • 4 篇 wu di
  • 4 篇 qiu guoping
  • 3 篇 yang zhiyong
  • 3 篇 hu miao
  • 3 篇 liang xiaodan
  • 3 篇 bao shilong
  • 3 篇 xu hang
  • 2 篇 conghan yue
  • 2 篇 yin jian
  • 2 篇 liu yang
  • 2 篇 chen weixing
  • 2 篇 liang lin
  • 2 篇 wu run
  • 2 篇 junlong ma
  • 2 篇 liu jiyang

语言

  • 40 篇 英文
  • 10 篇 其他
检索条件"机构=Guangdong Key Laboratory of Big Data Analysis and Processing and Peng Cheng Laboratory"
50 条 记 录,以下是31-40 订阅
排序:
AUCSeg: AUC-oriented Pixel-level Long-tail Semantic Segmentation
arXiv
收藏 引用
arXiv 2024年
作者: Han, Boyu Xu, Qianqian Yang, Zhiyong Bao, Shilong Wen, Peisong Jiang, Yangbangyan Huang, Qingming Key Lab. of Intelligent Information Processing Institute of Computing Technology CAS China School of Computer Science and Tech. University of Chinese Academy of Sciences China Peng Cheng Laboratory China Key Laboratory of Big Data Mining and Knowledge Management CAS China
The Area Under the ROC Curve (AUC) is a well-known metric for evaluating instance-level long-tail learning problems. In the past two decades, many AUC optimization methods have been proposed to improve model performan... 详细信息
来源: 评论
Restoration of User Videos Shared on Social Media
arXiv
收藏 引用
arXiv 2022年
作者: Luo, Hongming Zhou, Fei Lam, Kin-Man Qiu, Guoping College of Electronics and Information Engineering Shenzhen University China Department of Electronic and Information Engineering The Hong Kong Polytechnic University China Peng Cheng Laboratory Shenzhen China Guangdong Key Laboratory of Intelligent Information Processing Shenzhen China Shenzhen Key Laboratory of Digital Creative Technology China Shenzhen Institute for Artificial Intelligence and Robotics for Society China Guangdong-Hong Kong Joint Laboratory for Big Data Imaging and Communication China
User videos shared on social media platforms usually suffer from degradations caused by unknown proprietary processing procedures, which means that their visual quality is poorer than that of the originals. This paper... 详细信息
来源: 评论
Aesthetically Relevant Image Captioning
arXiv
收藏 引用
arXiv 2022年
作者: Zhong, Zhipeng Zhou, Fei Qiu, Guoping College of Electronics and Information Engineering Shenzhen University China Peng Cheng National Laboratory Shenzhen China Guangdong Key Laboratory of Intelligent Information Processing Shenzhen China Shenzhen Institute for Artificial Intelligence and Robotics for Society China Guangdong-Hong Kong Joint Laboratory for Big Data Imaging and Communication Shenzhen China School of Computer Science The University of Nottingham United Kingdom
Image aesthetic quality assessment (AQA) aims to assign numerical aesthetic ratings to images whilst image aesthetic captioning (IAC) aims to generate textual descriptions of the aesthetic aspects of images. In this p...
来源: 评论
Dynamic aspiration based on win-stay-lose-learn rule in spatial prisoner's dilemma game
arXiv
收藏 引用
arXiv 2020年
作者: Shi, Zhenyu Wei, Wei Feng, Xiangnan Li, Xing Zheng, Zhiming School of Mathematical Sciences Beihang University Beijing China Key Laboratory of Mathematics Informatics Behavioral Semantics Ministry of Education China Peng Cheng Laboratory ShenzhenGuangdong China Beijing Advanced Innovation Center for Big Data and Brain Computing Beihang China
Prisoner’s dilemma game is the most commonly used model of spatial evolutionary game which is considered as a paradigm to portray competition among selfish individuals. In recent years, Win-Stay-Lose-Learn, a strateg... 详细信息
来源: 评论
COLLABORATIVE AUTO-ENCODING FOR BLIND IMAGE QUALITY ASSESSMENT
arXiv
收藏 引用
arXiv 2023年
作者: Zhou, Zehong Zhou, Fei Qiu, Guoping College of Electronic and Information Engineering Shenzhen University Shenzhen China Peng Cheng Laboratory Shenzhen China Guangdong Key Laboratory of Intelligent Information Processing Shenzhen China Shenzhen Institute for Artificial Intelligence and Robotics for Society Shenzhen China School of Computer Science University of Nottingham Nottingham United Kingdom Guangdong-Hong Kong Joint Laboratory for Big Data Imaging and Communication Shenzhen China
Blind image quality assessment (BIQA) is a challenging problem with important real-world applications. Recent efforts attempting to exploit powerful representations by deep neural networks (DNN) are hindered by the la... 详细信息
来源: 评论
Collaborative Auto-encoding for Blind Image Quality Assessment
Collaborative Auto-encoding for Blind Image Quality Assessme...
收藏 引用
IEEE International Conference on Multimedia and Expo (ICME)
作者: Zehong Zhou Fei Zhou Guoping Qiu College of Electronic and Information Engineering Shenzhen University Shenzhen China Guangdong Key Laboratory of Intelligent Information Processing Shenzhen China Shenzhen Institute for Artificial Intelligence and Robotics for Society Shenzhen China Peng Cheng Laboratory Shenzhen China Guangdong-Hong Kong Joint Laboratory for Big Data Imaging and Communication Shenzhen China School of Computer Science University of Nottingham Nottingham U.K
Blind image quality assessment (BIQA) is a challenging problem with important real-world applications. Recent efforts attempting to exploit powerful representations by deep neural networks (DNN) are hindered by the la...
来源: 评论
FW-GAN: Flow-Navigated Warping GAN for Video Virtual Try-On
FW-GAN: Flow-Navigated Warping GAN for Video Virtual Try-On
收藏 引用
International Conference on Computer Vision (ICCV)
作者: Haoye Dong Xiaodan Liang Xiaohui Shen Bowen Wu Bing-cheng Chen Jian Yin School of Data and Computer Science Sun Yat-sen University Guangdong Key Laboratory of Big Data Analysis and Processing Guangzhou P.R.China School of Intelligent Systems Engineering Sun Yat-sen University ByteDance AI Lab
Beyond current image-based virtual try-on systems that have attracted increasing attention, we move a step forward to developing a video virtual try-on system that precisely transfers clothes onto the person and gener... 详细信息
来源: 评论
Super-resolving Compressed Images via Parallel and Series Integration of Artifact Reduction and Resolution Enhancement
arXiv
收藏 引用
arXiv 2021年
作者: Luo, Hongming Zhou, Fei Liao, Guangsen Qiu, Guoping College of Electronics and Information Engineering Shenzhen University China Peng Cheng Laboratory Shenzhen China Guangdong Key Laboratory of Intelligent Information Processing Shenzhen China Shenzhen Key Laboratory of Digital Creative Technology China Shenzhen Institute for Artificial Intelligence and Robotics for Society Shenzhen China School of Computer Science University of Nottingham NottinghamNG8 1BB United Kingdom Guangdong-Hong Kong Joint Laboratory for Big Data Imaging and Communication Guangdong Shenzhen China
In real-world applications, such as sharing photos on social media platforms, images are always not only sub-sampled but also heavily compressed thus often containing various artefacts. Simple methods for enhancing th... 详细信息
来源: 评论
Global context-aware progressive aggregation network for salient object detection
arXiv
收藏 引用
arXiv 2020年
作者: Chen, Zuyao Xu, Qianqian Cong, Runmin Huang, Qingming University of Chinese Academy of Sciences Beijing China Key Lab. of Intelligent Information Processing ICT CAS Beijing China Institute of Information Science Beijing Jiaotong University Beijing China Key Lab. of Big Data Mining and Knowledge Management CAS Beijing China Peng Cheng Laboratory Shenzhen Guangdong China
Deep convolutional neural networks have achieved competitive performance in salient object detection, in which how to learn effective and comprehensive features plays a critical role. Most of the previous works mainly... 详细信息
来源: 评论
Optimizing video caching at the edge: A hybrid multi-point process approach
arXiv
收藏 引用
arXiv 2021年
作者: Zhang, Xianzhi Zhou, Yipeng Wu, Di Hu, Miao Xi Zheng, James Chen, Min Guo, Song Department of Computer Science Sun Yat-sen University Guangzhou510006 China Guangdong Key Laboratory of Big Data Analysis and Processing Guangzhou510006 China Peng Cheng Laboratory Shenzhen518000 China Department of Computing FSE Macquarie University 2122 Australia School of Computer Science and Technology Huazhong University of Science and Technology Wuhan430074 China Department of Computing The Polytechnic University of Hong Kong Hong Kong
It is always a challenging problem to deliver a huge volume of videos over the Internet. To meet the high bandwidth and stringent playback demand, one feasible solution is to cache video contents on edge servers based... 详细信息
来源: 评论