咨询与建议

限定检索结果

文献类型

  • 30 篇 期刊文献
  • 18 篇 会议

馆藏范围

  • 48 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 31 篇 工学
    • 24 篇 计算机科学与技术...
    • 19 篇 软件工程
    • 12 篇 信息与通信工程
    • 11 篇 生物工程
    • 5 篇 电气工程
    • 5 篇 控制科学与工程
    • 4 篇 电子科学与技术(可...
    • 3 篇 网络空间安全
    • 2 篇 建筑学
    • 2 篇 土木工程
    • 2 篇 测绘科学与技术
    • 2 篇 化学工程与技术
    • 1 篇 机械工程
    • 1 篇 光学工程
    • 1 篇 仪器科学与技术
    • 1 篇 材料科学与工程(可...
    • 1 篇 水利工程
    • 1 篇 纺织科学与工程
    • 1 篇 航空宇航科学与技...
    • 1 篇 农业工程
  • 18 篇 理学
    • 11 篇 生物学
    • 8 篇 数学
    • 5 篇 物理学
    • 3 篇 统计学(可授理学、...
    • 1 篇 化学
    • 1 篇 大气科学
  • 13 篇 管理学
    • 8 篇 管理科学与工程(可...
    • 5 篇 图书情报与档案管...
  • 1 篇 经济学
    • 1 篇 应用经济学
  • 1 篇 农学
    • 1 篇 作物学

主题

  • 3 篇 deep neural netw...
  • 3 篇 feature extracti...
  • 2 篇 noise reduction
  • 2 篇 reinforcement le...
  • 2 篇 bridges
  • 2 篇 signal processin...
  • 2 篇 image restoratio...
  • 2 篇 speech processin...
  • 2 篇 speech enhanceme...
  • 2 篇 robots
  • 2 篇 diffusion proces...
  • 2 篇 computational mo...
  • 2 篇 semantics
  • 2 篇 faces
  • 2 篇 diffusion models
  • 2 篇 accuracy
  • 2 篇 training
  • 2 篇 visual languages
  • 1 篇 cross-species
  • 1 篇 image fusion

机构

  • 30 篇 peng cheng labor...
  • 17 篇 guangdong key la...
  • 12 篇 sun yat-sen univ...
  • 8 篇 guangdong key la...
  • 7 篇 guangdong-hong k...
  • 5 篇 shenzhen institu...
  • 4 篇 key lab. of inte...
  • 4 篇 school of comput...
  • 4 篇 college of elect...
  • 4 篇 key laboratory o...
  • 3 篇 college of elect...
  • 3 篇 school of cyber ...
  • 3 篇 school of comput...
  • 2 篇 college of compu...
  • 2 篇 department of co...
  • 2 篇 institute of inf...
  • 2 篇 shenzhen campus ...
  • 2 篇 the university o...
  • 2 篇 school of comput...
  • 2 篇 shenzhen key lab...

作者

  • 6 篇 huang qingming
  • 6 篇 xu qianqian
  • 5 篇 li guanbin
  • 5 篇 zhou fei
  • 4 篇 wu di
  • 4 篇 lin liang
  • 4 篇 qiu guoping
  • 3 篇 yang zhiyong
  • 3 篇 hu miao
  • 3 篇 liang xiaodan
  • 3 篇 bao shilong
  • 3 篇 xu hang
  • 2 篇 conghan yue
  • 2 篇 yin jian
  • 2 篇 wu run
  • 2 篇 junlong ma
  • 2 篇 luo hongming
  • 2 篇 wang zitai
  • 2 篇 he zijian
  • 2 篇 jiang yangbangya...

语言

  • 40 篇 英文
  • 8 篇 其他
检索条件"机构=Guangdong Key Laboratory of Big Data Analysis and Processing and Peng Cheng Laboratory"
48 条 记 录,以下是41-50 订阅
排序:
Simultaneous q-Space Sampling Optimization and Reconstruction for Fast and High-fidelity Diffusion Magnetic Resonance Imaging
arXiv
收藏 引用
arXiv 2024年
作者: Yang, Jing cheng, Jian Li, cheng Fan, Wenxin Zou, Juan Wu, Ruoyou Wang, Shanshan Paul C. Lauterbur Research Center for Biomedical Imaging Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Guangdong Shenzhen China University of Chinese Academy of Sciences Beijing China State Key Laboratory of Software Development Environment Beihang University Beijing China Peng Cheng Laboratory Guangdong Shenzhen China Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application Guangdong China Key Laboratory of Data Science and Intelligent Computing Institute of International Innovation Beihang University Yuhang District Hangzhou China
Diffusion Magnetic Resonance Imaging (dMRI) plays a crucial role in the noninvasive investigation of tissue microstructural properties and structural connectivity in the in vivo human brain. However, to effectively ca... 详细信息
来源: 评论
Motif Graph Neural Network
arXiv
收藏 引用
arXiv 2021年
作者: Chen, Xuexin Cai, Ruichu Fang, Yuan Wu, Min Li, Zijian Hao, Zhifeng The School of Computer Science Guangdong University of Technology Guangzhou510006 China The School of Computer Science Guangdong University of Technology Guangdong Provincial Key Laboratory of Public Finance and Taxation with Big Data Application Guangzhou China Peng Cheng Laboratory Shenzhen518066 China The School of Computing and Information Systems Singapore Management University 178902 Singapore A*STAR 138632 Singapore The College of Science Shantou University Shantou515063 China
Graphs can model complicated interactions between entities, which naturally emerge in many important applications. These applications can often be cast into standard graph learning tasks, in which a crucial step is to... 详细信息
来源: 评论
Enhancing Event Tagger with Automatic Speech Recognizer for Audio Multi-task Scenarios by Distillation with Pre-Trained Large Models
Enhancing Event Tagger with Automatic Speech Recognizer for ...
收藏 引用
IEEE International Conference on Systems, Man and Cybernetics
作者: Jianfeng cheng Ye Liu Jian Yin Liangdao Wang Yan Pan Artificial Intelligence Department Lizhi Inc. Beijing & Guangzhou China School of Computer Science and Engineering Sun Yat-sen University Guangzhou China Guangdong Key Laboratory of Big Data Analysis and Processing Guangzhou China School of Artificial Intelligence Sun Yat-sen University Zhuhai China
With the continuous expansion of robotics and digital humans in practical applications, the demand for the auditory system is becoming deeper, usually requiring more efficient speech recognition framework capabilities... 详细信息
来源: 评论
Opara: Exploiting Operator Parallelism for Expediting DNN Inference on GPUs
arXiv
收藏 引用
arXiv 2023年
作者: Chen, Aodong Xu, Fei Han, Li Dong, Yuan Chen, Li Zhou, Zhi Liu, Fangming The Shanghai Key Laboratory of Multidimensional Information Processing School of Computer Science and Technology East China Normal University 3663 N. Zhongshan Road Shanghai200062 China The School of Software Engineering East China Normal University 3663 N. Zhongshan Road Shanghai200062 China The School of Computing and Informatics University of Louisiana at Lafayette 301 East Lewis Street LafayetteLA70504 United States The Guangdong Key Laboratory of Big Data Analysis and Processing School of Computer Science and Engineering Sun Yat-sen University 132 E. Waihuan Road Guangzhou510006 China Peng Cheng Laboratory Huazhong University of Science and Technology China
GPUs have become the defacto hardware devices for accelerating Deep Neural Network (DNN) inference workloads. However, the conventional sequential execution mode of DNN operators in mainstream deep learning frameworks... 详细信息
来源: 评论
AdAUC: End-to-end Adversarial AUC Optimization Against Long-tail Problems
arXiv
收藏 引用
arXiv 2022年
作者: Hou, Wenzheng Xu, Qianqian Yang, Zhiyong Bao, Shilong He, Yuan Huang, Qingming Key Laboratory of Intelligent Information Processing Institute of Computing Technology CAS Beijing China School of Computer Science and Technology University of Chinese Academy of Sciences Beijing China State Key Laboratory of Information Security Institute of Information Engineering CAS Beijing China School of Cyber Security University of Chinese Academy of Sciences Beijing China Alibaba Group Beijing China Key Laboratory of Big Data Mining and Knowledge Management Chinese Academy of Sciences Beijing China Artificial Intelligence Research Center Peng Cheng Laboratory Shenzhen China
It is well-known that deep learning models are vulnerable to adversarial examples. Existing studies of adversarial training have made great progress against this challenge. As a typical trait, they often assume that t... 详细信息
来源: 评论
DRL-M4MR: An Intelligent Multicast Routing Approach Based on DQN Deep Reinforcement Learning in SDN
arXiv
收藏 引用
arXiv 2022年
作者: Zhao, Chenwei Ye, Miao Xue, Xingsi Lv, Jianhui Jiang, Qiuxiang Wang, Yong School of Information and Communication Guilin University of Electronic Technology Guilin541004 China Guangxi Key Laboratory of Wireless Wideband Communication and Signal Processing Guilin University of Electronic Technology Guilin541004 China Fujian Provincial Key Laboratory of Big Data Mining and Applications Fujian University of Technology Fujian Fuzhou350118 China Peng Cheng Lab. Guangdong Shenzhen518038 China School of Computer Science and Information Security Guilin University of Electronic Technology Guilin541004 China
Traditional multicast routing methods have some problems in constructing a multicast tree, such as limited access to network state information, poor adaptability to dynamic and complex changes in the network, and infl... 详细信息
来源: 评论
Not All Diffusion Model Activations Have Been Evaluated as Discriminative Features
arXiv
收藏 引用
arXiv 2024年
作者: Meng, Benyuan Xu, Qianqian Wang, Zitai Cao, Xiaochun Huang, Qingming Institute of Information Engineering CAS China School of Cyber Security University of Chinese Academy of Sciences China Key Lab. of Intelligent Information Processing Institute of Computing Technology CAS China Peng Cheng Laboratory China School of Cyber Science and Tech. Shenzhen Campus of Sun Yat-sen University China School of Computer Science and Tech. University of Chinese Academy of Sciences China Key Laboratory of Big Data Mining and Knowledge Management CAS China
Diffusion models are initially designed for image generation. Recent research shows that the internal signals within their backbones, named activations, can also serve as dense features for various discriminative task... 详细信息
来源: 评论
Multiple residual dense networks for reconfigurable intelligent surfaces cascaded channel estimation
arXiv
收藏 引用
arXiv 2021年
作者: Jin, Yu Zhang, Jiayi Huang, Chongwen Yang, Liang Xiao, Huahua Ai, Bo Wang, Zhiqin The School of Electronic and Information Engineering Beijing Jiaotong University Beijing100044 China The Frontiers Science Center for Smart High-speed Railway System Beijing Jiaotong University Beijing100044 China Zhejiang Provincial Key Lab of Information Processing Communication and Networking Zhejiang University Hangzhou310007 China College of Computer Science and Electronic Engineering Hunan University Changsha410082 China ZTE Corporation State Key Laboratory of Mobile Network Mobile Multimedia Technology Shenzhen518057 China State Key Laboratory of Rail Traffic Control and Safety Beijing Jiaotong University Beijing100044 China Henan Joint International Research Laboratory of Intelligent Networking and Data Analysis Zhengzhou University Zhengzhou450001 China Research Center of Networks and Communications Peng Cheng Laboratory Shenzhen518055 China China Academy of Information and Communications Technology Beijing100191 China
Reconfigurable intelligent surface (RIS) constitutes an essential and promising paradigm that relies programmable wireless environment and provides capability for space-intensive communications, due to the use of low-... 详细信息
来源: 评论