Dielectric metasurfaces have achieved great success in realizing high-efficiency wavefront control in the optical and infrared ranges. Here, we experimentally demonstrate several efficient, polarization-independent, a...
详细信息
Dielectric metasurfaces have achieved great success in realizing high-efficiency wavefront control in the optical and infrared ranges. Here, we experimentally demonstrate several efficient, polarization-independent, all-silicon dielectric metasurfaces in the terahertz regime. The metasurfaces are composed of cylindrical silicon pillars on a silicon substrate, which can be easily fabricated using etching technology for semiconductors. By locally tailoring the diameter of the pillars, full control over abrupt phase changes can be achieved. To show the controlling ability of the metasurfaces, an anomalous deflector, three Bessel beam generators, and three vortex beam generators are fabricated and characterized. We also show that the proposed metasurfaces can be easily combined to form composite devices with extended functionalities. The proposed controlling method has promising applications in developing low-loss, ultra-compact spatial terahertz modulation devices.
Recently reported active metamaterial analogues of electromagnetically induced transparency (EIT) are promising in developing novel optical components, such as active slow light devices. However, most of the previous ...
详细信息
Recently reported active metamaterial analogues of electromagnetically induced transparency (EIT) are promising in developing novel optical components, such as active slow light devices. However, most of the previous works have focused on manipulating the EIT resonance strength at a fixed characteristic frequency and, therefore, realized on-to-off switching responses. To further extend the functionalities of the EIT effect, here we present a frequency tunable EIT analogue in the terahertz regime by integrating photoactive silicon into the metamaterial unit cell. A tuning range from 0.82 to 0.74 THz for the EIT resonance frequency is experimentally observed by optical pump-terahertz probe measurements, allowing a frequency tunable group delay of the terahertz pulses. This straightforward approach delivers frequency agility of the EIT resonance and may enable novel ultrafast tunable devices for integrated plasmonic circuits.
Recently, metasurfaces made up of dielectric structures have drawn enormous attentions in the optical and infrared regimes due to their high efficiency and designing freedom in manipulating light propagation. Such adv...
详细信息
Recently, metasurfaces made up of dielectric structures have drawn enormous attentions in the optical and infrared regimes due to their high efficiency and designing freedom in manipulating light propagation. Such advantages can also be introduced to terahertz frequencies where efficient functional devices are still lacking. Here, polarization-dependent all-silicon terahertz dielectric metasurfaces are proposed and experimentally demonstrated. The metasurfaces are composed of anisotropic rectangular-shaped silicon pillars on silicon substrate. Each metasurface holds dual different functions depending on the incident polarizations. Furthermore, to suppress the reflection loss and multireflection effect in practical applications, a high-performance polarization-independent antireflection silicon pillar array is also proposed, which can be patterned at the other side of the silicon substrate. Such all-silicon dielectric metasurfaces are easy to fabricate and can be very promising in developing next-generation efficient, compact, and low-cost terahertz functional devices.
This paper deals with the modeling of fault for analog circuits. A two-dimensional (2D) fault model is first proposed based on collaborative analysis of supply current and output voltage. This model is a family of cir...
Based on the first ionization chamber (IC) prototype, the structure, working gas component and electrode material of the IC are improved. The test of the improved IC shows that the plateau length is about 2000 V, th...
详细信息
Based on the first ionization chamber (IC) prototype, the structure, working gas component and electrode material of the IC are improved. The test of the improved IC shows that the plateau length is about 2000 V, the plateau slope is less than 0.2%/100 V, the sensitivity is 19.6 pA/rad·h 1, the up-limitation of the linearity can be up to 3.6×105 rad/h, and the applied voltage can be operated to 3500 V. The test results show that the performance of the improved IC meets the requirements of the beam loss monitor.
暂无评论