作者:
王振华吴伟仁田玉龙田金文柳健Institute for Pattern Recognition and Artificial Intelligence
State Key Lab for Image Processing and Intelligent ControlHuazhong University of Science and Technology Wuhan 430074 China Institute for Pattern Recognition and Artificial Intelligence
State Key Lab for Image Processing and Intelligent ControlHuazhong University of Science and Technology Wuhan 430074 China major limitation for deep space communication is the limited bandwidths available. The downlink rate using X-band with an L2 halo orbit is estimated to be of only 5.35 GB/d. However the Next Generation Space Telescope (NGST) will produce about 600 GB/d. Clearly the volume of data to downlink must be reduced by at least a factor of 100. One of the resolutions is to encode the data using very low bit rate image compression techniques. An very low bit rate image compression method based on region of interest(ROI) has been proposed for deep space image. The conventional image compression algorithms which encode the original data without any data analysis can maintain very good details and haven't high compression rate while the modern image compressions with semantic organization can have high compression rate even to be hundred and can't maintain too much details. The algorithms based on region of interest inheriting from the two previews algorithms have good semantic features and high fidelity and is therefore suitable for applications at a low bit rate. The proposed method extracts the region of interest by texture analysis after wavelet transform and gains optimal local quality with bit rate control. The Result shows that our method can maintain more details in ROI than general image compression algorithm(SPIHT) under the condition of sacrificing the quality of other uninterested areas
A major limitation for deep space communication is the limited bandwidths available. The downlinkrate using X-band with an L2 halo orbit is estimated to be of only 5.35 GB/d. However, the Next GenerationSpace Telescop...
详细信息
A major limitation for deep space communication is the limited bandwidths available. The downlinkrate using X-band with an L2 halo orbit is estimated to be of only 5.35 GB/d. However, the Next GenerationSpace Telescope (NGST) will produce about 600 GB/d. Clearly the volume of data to downlink must be re-duced by at least a factor of 100. One of the resolutions is to encode the data using very low bit rate image com-pression techniques. An very low bit rate image compression method based on region of interest(ROI) has beenproposed for deep space image. The conventional image compression algorithms which encode the original datawithout any data analysis can maintain very good details and haven' t high compression rate while the modernimage compressions with semantic organization can have high compression rate even to be hundred and can' tmaintain too much details. The algorithms based on region of interest inheriting from the two previews algorithmshave good semantic features and high fidelity, and is therefore suitable for applications at a low bit rate. Theproposed method extracts the region of interest by texture analysis after wavelet transform and gains optimal localquality with bit rate control. The Result shows that our method can maintain more details in ROI than generalimage compression algorithm(SPIHT) under the condition of sacrificing the quality of other uninterested areas.
With the development of remote sensing technique, onboard data compression has become an urgent need and a lot of study has been directed toward the development of efficient techniques. In this paper, the construction...
详细信息
This paper proposes a genetic-based algorithm for surface reconstruction of three-dimension (3-D) objects from a group of contours representing its section plane lines. The algorithm can optimize the triangulation of ...
详细信息
This paper proposes a genetic-based algorithm for surface reconstruction of three-dimension (3-D) objects from a group of contours representing its section plane lines. The algorithm can optimize the triangulation of the surface of 3-D objects with a multi-objective optimization function to meet the needs of a wide range of applications. Further, a new crossover operator for triangulation and a new 3-D quadrilateral mutation operator are also introduced.
暂无评论