咨询与建议

限定检索结果

文献类型

  • 75 篇 会议
  • 39 篇 期刊文献
  • 1 册 图书

馆藏范围

  • 115 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 77 篇 理学
    • 54 篇 数学
    • 23 篇 生物学
    • 22 篇 物理学
    • 20 篇 统计学(可授理学、...
    • 6 篇 化学
    • 5 篇 系统科学
  • 69 篇 工学
    • 55 篇 计算机科学与技术...
    • 53 篇 软件工程
    • 30 篇 信息与通信工程
    • 22 篇 生物工程
    • 8 篇 机械工程
    • 7 篇 光学工程
    • 6 篇 化学工程与技术
    • 5 篇 生物医学工程(可授...
    • 3 篇 交通运输工程
    • 3 篇 安全科学与工程
    • 2 篇 冶金工程
    • 1 篇 仪器科学与技术
    • 1 篇 电气工程
    • 1 篇 控制科学与工程
    • 1 篇 水利工程
    • 1 篇 石油与天然气工程
    • 1 篇 轻工技术与工程
  • 24 篇 管理学
    • 16 篇 图书情报与档案管...
    • 7 篇 管理科学与工程(可...
    • 2 篇 工商管理
  • 2 篇 法学
    • 2 篇 社会学
  • 1 篇 经济学
    • 1 篇 理论经济学
    • 1 篇 应用经济学
  • 1 篇 教育学
    • 1 篇 教育学
  • 1 篇 农学

主题

  • 13 篇 emotion recognit...
  • 6 篇 face recognition
  • 4 篇 financial market...
  • 4 篇 neural networks
  • 4 篇 feature extracti...
  • 4 篇 training
  • 4 篇 convolutional ne...
  • 3 篇 deep neural netw...
  • 3 篇 random variables
  • 3 篇 graphic methods
  • 3 篇 image recognitio...
  • 2 篇 object detection
  • 2 篇 task analysis
  • 2 篇 automation
  • 2 篇 recommender syst...
  • 2 篇 polynomial appro...
  • 2 篇 self-supervised ...
  • 2 篇 convolution
  • 2 篇 factorization
  • 2 篇 predictive model...

机构

  • 23 篇 laboratory of al...
  • 23 篇 hse university l...
  • 15 篇 sber ai lab mosc...
  • 13 篇 laboratory of al...
  • 8 篇 national researc...
  • 7 篇 hse university n...
  • 6 篇 national researc...
  • 5 篇 laboratory of al...
  • 4 篇 moscow
  • 3 篇 lobachevsky stat...
  • 3 篇 laboratory of di...
  • 3 篇 national researc...
  • 3 篇 laboratory of al...
  • 3 篇 department of in...
  • 2 篇 laboratory of al...
  • 2 篇 laboratory of al...
  • 2 篇 st. petersburg d...
  • 2 篇 isp ras research...
  • 2 篇 national researc...
  • 2 篇 laboratory of al...

作者

  • 35 篇 savchenko andrey...
  • 9 篇 andrey v. savche...
  • 9 篇 savchenko andrey
  • 8 篇 batsyn mikhail
  • 6 篇 bychkov ilya
  • 5 篇 pardalos panos m...
  • 4 篇 gribanov dmitry
  • 4 篇 koldanov p.a.
  • 4 篇 makarov ilya
  • 4 篇 andrey savchenko
  • 3 篇 pardalos panos
  • 3 篇 koldanov a.p.
  • 3 篇 kalyagin valeriy
  • 3 篇 koldanov petr a.
  • 3 篇 shumilov ivan
  • 3 篇 savchenko a.v.
  • 3 篇 grechikhin ivan ...
  • 3 篇 malyshev dmitry ...
  • 3 篇 malyshev dmitry
  • 3 篇 demochkina polin...

语言

  • 112 篇 英文
  • 3 篇 其他
  • 1 篇 中文
检索条件"机构=HSE University Laboratory of Algorithms and Technologies for Network Analysis"
115 条 记 录,以下是51-60 订阅
排序:
Invariance properties of statistical procedures for network structures identification  7th
Invariance properties of statistical procedures for network ...
收藏 引用
7th International Conference on network analysis, NET 2017
作者: Koldanov, Petr A. Laboratory of Algorithms and Technologies for Network Analysis National Research University Higher School of Economics Bolshaya Pecherskaya 25/12 Nizhny Novgorod603155 Russia
Invariance properties of statistical procedures for threshold graph identification are considered. An optimal procedure in the class of invariant multiple decision procedures is constructed. © Springer Internatio... 详细信息
来源: 评论
CA-SER: Cross-Attention Feature Fusion for Speech Emotion Recognition  27
CA-SER: Cross-Attention Feature Fusion for Speech Emotion Re...
收藏 引用
27th European Conference on Artificial Intelligence, ECAI 2024
作者: Deeb, Bashar M. Savchenko, Andrey Makarov, Ilya MIPT Moscow Russia Laboratory of Algorithms and Technologies for Network Analysis HSE University Nizhny Novgorod Russia Sber AI Lab Moscow Russia Moscow Russia ISP RAS Research Center for Trusted Artificial Intelligence Moscow Russia
In this paper, we introduce a novel tool for speech emotion recognition, CA-SER, that borrows self-supervised learning to extract semantic speech representations from a pre-trained wav2vec 2.0 model and combine them w... 详细信息
来源: 评论
Compressing deep convolutional neural networks in visual emotion recognition
Compressing deep convolutional neural networks in visual emo...
收藏 引用
2017 International Conference Information Technology and Nanotechnology. Session Image Processing, Geoinformation Technology and Information Security, IPGTIS-ITNT 2017
作者: Rassadin, A.G. Savchenko, A.V. National Research University Higher School of Economics Laboratory of Algorithms and Technologies for Network Analysis 25/12 Bolshaya Pecherskaya Street Nizhny Novgorod603155 Russia
In this paper, we consider the problem of insufficient runtime and memory-space complexities of deep convolutional neural networks for visual emotion recognition. A survey of recent compression methods and efficient n... 详细信息
来源: 评论
hsemotion Team at the 6th ABAW Competition: Facial Expressions, Valence-Arousal and Emotion Intensity Prediction
arXiv
收藏 引用
arXiv 2024年
作者: Savchenko, Andrey V. Sber AI Lab Moscow Russia HSE University Laboratory of Algorithms and Technologies for Network Analysis Nizhny Novgorod Russia
This article presents our results for the sixth Affective Behavior analysis in-the-wild (ABAW) competition. To improve the trustworthiness of facial analysis, we study the possibility of using pre-trained deep models ... 详细信息
来源: 评论
Improved Credit Scoring Model with Hyperparameter Optimization  23rd
Improved Credit Scoring Model with Hyperparameter Optimizati...
收藏 引用
23rd International Conference on Mathematical Optimization Theory and Operations Research, MOTOR 2024
作者: Marciano, Chiara Guarracino, Mario Rosario Bernhardt, Brian Daniel University of Cassino and Southern Lazio Cassino Italy Laboratory of Algorithms and Technologies for Network Analysis National Research University Higher School of Economics - Nizhny Novgorod Nizhny Novgorod Russia
This article investigates the application of machine learning techniques for predicting corporate default risk. In the credit scoring domain, the class imbalance problem is prevalent, with defaulted cases typically be... 详细信息
来源: 评论
hsemotion Team at the 7th ABAW Challenge: Multi-Task Learning and Compound Facial Expression Recognition
arXiv
收藏 引用
arXiv 2024年
作者: Savchenko, Andrey V. Sber AI Lab Moscow Russia HSE University Laboratory of Algorithms and Technologies for Network Analysis Nizhny Novgorod Russia
In this paper, we describe the results of the hsemotion team in two tasks of the seventh Affective Behavior analysis in-the-wild (ABAW) competition, namely, multi-task learning for simultaneous prediction of facial ex... 详细信息
来源: 评论
Leveraging Pre-trained Multi-task Deep Models for Trustworthy Facial analysis in Affective Behaviour analysis in-the-Wild
Leveraging Pre-trained Multi-task Deep Models for Trustworth...
收藏 引用
IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)
作者: Andrey V. Savchenko Sber AI Lab Moscow Russia Laboratory of Algorithms and Technologies for Network Analysis HSE University Nizhny Novgorod Russia
This article presents our results for the sixth Affective Behavior analysis in-the-wild (ABAW) competition. To improve the trustworthiness of facial analysis, we study the possibility of using pre-trained deep models ... 详细信息
来源: 评论
EmotiEffNet Facial Features in Uni-task Emotion Recognition in Video at ABAW-5 competition
arXiv
收藏 引用
arXiv 2023年
作者: Savchenko, Andrey V. Sber AI Lab Moscow Russia HSE University Laboratory of Algorithms and Technologies for Network Analysis Nizhny Novgorod Russia
In this article, the results of our team for the fifth Affective Behavior analysis in-the-wild (ABAW) competition are presented. The usage of the pre-trained convolutional networks from the EmotiEffNet family for fram... 详细信息
来源: 评论
Learning Facial Expression Recognition In-the-Wild from Synthetic Data Based on an Ensemble of Lightweight Neural networks  11th
Learning Facial Expression Recognition In-the-Wild from Syn...
收藏 引用
11th International Conference on analysis of Images, Social networks and Texts , AIST 2023
作者: Nguyen, Long Savchenko, Andrey V. HSE University Laboratory of Algorithms and Technologies for Network Analysis Nizhny Novgorod Russia Sber AI Lab Moscow Russia
This paper deals with one of the problems of recognizing the emotion from a photo gathered from in-the-wild settings, namely, facial expression recognition. We study various ensemble approaches that combine the lightw... 详细信息
来源: 评论
EmotiEffNets for Facial Processing in Video-based Valence-Arousal Prediction, Expression Classification and Action Unit Detection
EmotiEffNets for Facial Processing in Video-based Valence-Ar...
收藏 引用
IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)
作者: Andrey V. Savchenko Sber AI Lab Moscow Russia HSE University Laboratory of Algorithms and Technologies for Network Analysis Nizhny Novgorod Russia
In this article, the pre-trained convolutional networks from the EmotiEffNet family for frame-level feature extraction are used for downstream emotion analysis tasks from the fifth Affective Behavior analysis in-the-w...
来源: 评论