咨询与建议

限定检索结果

文献类型

  • 994 篇 期刊文献
  • 438 篇 会议
  • 10 册 图书

馆藏范围

  • 1,442 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 894 篇 理学
    • 562 篇 数学
    • 347 篇 物理学
    • 137 篇 统计学(可授理学、...
    • 133 篇 生物学
    • 93 篇 化学
    • 86 篇 系统科学
    • 29 篇 地球物理学
  • 827 篇 工学
    • 456 篇 计算机科学与技术...
    • 356 篇 软件工程
    • 137 篇 信息与通信工程
    • 123 篇 电子科学与技术(可...
    • 119 篇 生物工程
    • 109 篇 控制科学与工程
    • 108 篇 电气工程
    • 92 篇 生物医学工程(可授...
    • 80 篇 材料科学与工程(可...
    • 77 篇 光学工程
    • 66 篇 化学工程与技术
    • 65 篇 力学(可授工学、理...
    • 53 篇 动力工程及工程热...
    • 40 篇 机械工程
    • 27 篇 仪器科学与技术
    • 27 篇 核科学与技术
  • 148 篇 管理学
    • 96 篇 管理科学与工程(可...
    • 58 篇 图书情报与档案管...
    • 43 篇 工商管理
  • 82 篇 医学
    • 76 篇 临床医学
    • 63 篇 基础医学(可授医学...
    • 36 篇 公共卫生与预防医...
    • 36 篇 药学(可授医学、理...
  • 25 篇 农学
  • 23 篇 法学
  • 15 篇 经济学
  • 14 篇 教育学
  • 2 篇 军事学
  • 2 篇 艺术学
  • 1 篇 历史学

主题

  • 34 篇 deep learning
  • 31 篇 accuracy
  • 23 篇 machine learning
  • 21 篇 finite element m...
  • 18 篇 optimization
  • 18 篇 feature extracti...
  • 18 篇 training
  • 17 篇 convolutional ne...
  • 15 篇 computational mo...
  • 14 篇 real-time system...
  • 14 篇 density function...
  • 11 篇 covid-19
  • 11 篇 gravitational wa...
  • 11 篇 predictive model...
  • 11 篇 numerical method...
  • 10 篇 internet of thin...
  • 10 篇 generative adver...
  • 10 篇 medical services
  • 10 篇 convergence
  • 10 篇 visualization

机构

  • 75 篇 lsec institute o...
  • 65 篇 school of mathem...
  • 64 篇 institute of com...
  • 35 篇 state key labora...
  • 21 篇 the state key la...
  • 19 篇 institute for pl...
  • 19 篇 university of so...
  • 17 篇 institute of app...
  • 16 篇 department of as...
  • 16 篇 scuola di ingegn...
  • 16 篇 king’s college l...
  • 16 篇 the university o...
  • 16 篇 infn sezione di ...
  • 16 篇 dipartimento di ...
  • 16 篇 università degli...
  • 16 篇 ligo laboratory ...
  • 16 篇 university of ma...
  • 16 篇 stony brook univ...
  • 16 篇 university of mi...
  • 16 篇 nasa goddard spa...

作者

  • 47 篇 liu ya-feng
  • 24 篇 zhou tao
  • 23 篇 buehler markus j...
  • 20 篇 yu haijun
  • 20 篇 zhou aihui
  • 16 篇 r. takahashi
  • 16 篇 j. c. bayley
  • 16 篇 k. komori
  • 16 篇 t. kajita
  • 16 篇 f. hellman
  • 16 篇 m. kinley-hanlon
  • 16 篇 t. mcrae
  • 16 篇 a. parisi
  • 16 篇 t. sawada
  • 16 篇 s. rowan
  • 16 篇 s. m. aronson
  • 16 篇 v. p. mitrofanov
  • 16 篇 a. j. tanasijczu...
  • 16 篇 g. moreno
  • 16 篇 g. hemming

语言

  • 1,335 篇 英文
  • 103 篇 其他
  • 5 篇 中文
  • 1 篇 日文
检索条件"机构=Hariri Institute for Computing and Computational Science and Engineering"
1442 条 记 录,以下是1171-1180 订阅
排序:
A comparative study use of OTL for many-objective optimization  15
A comparative study use of OTL for many-objective optimizati...
收藏 引用
17th Genetic and Evolutionary Computation Conference, GECCO 2015
作者: Zheng, Jinhua Bai, Hui Shen, Ruimin Li, Miqing Institute of Information Engineering Xiangtan University Hunan411105 China Institute of Mathematics and Computational Science Xiangtan University Hunan411105 China Department of Information Systems and Computing Brunel University Uxbridge MiddlesexUB8 3PH United Kingdom
This study exhaustively compares the abilities to solve manyobjective problems of eight representative algorithms from four different classes (i.e., Pareto-, aggregation-, indicator-, and diversity-based EMO algorithm... 详细信息
来源: 评论
A fully implicit method for lattice boltzmann equations
A fully implicit method for lattice boltzmann equations
收藏 引用
作者: Huang, Jizu Yang, Chao Cai, Xiao-Chuan Institute of Computational Mathematics and Scientific/Engineering Computing Academy of Mathematics and Systems Science Chinese Academy of Sciences Beijing100190 China Institute of Software Chinese Academy of Sciences Beijing100190 China State Key Laboratory of Computer Science Beijing100190 China Department of Computer Science University of Colorado Boulder BoulderCO80309 United States
Existing approaches for solving the lattice Boltzmann equations with finite difference methods are explicit and semi-implicit;both have certain stability constraints on the time step size. In this work, a fully implic... 详细信息
来源: 评论
M-Statistic for Kernel Change-Point Detection  15
M-Statistic for Kernel Change-Point Detection
收藏 引用
Annual Conference on Neural Information Processing Systems
作者: Shuang Li Yao Xie Hanjun Dai Le Song H. Milton Stewart School of Industrial and Systems Engineering Georgian Institute of Technology Computational Science and Engineering College of Computing Georgia Institute of Technology
Detecting the emergence of an abrupt change-point is a classic problem in statistics and machine learning. Kernel-based nonparametric statistics have been proposed for this task which make fewer assumptions on the dis...
来源: 评论
Analysis on a Superlinearly Convergent Augmented Lagrangian Method
收藏 引用
Acta Mathematica Sinica,English Series 2014年 第1期30卷 1-10页
作者: Ya Xiang YUAN State Key Laboratory of Scientific/Engineering Computing Institute of Computational Mathematics and Scientific/Engineering ComputingAcademy of Mathematics and Systems ScienceChinese Academy of Sciences
The augmented Lagrangian method is a classical method for solving constrained ***,the augmented Lagrangian method attracts much attention due to its applications to sparse optimization in compressive sensing and low r... 详细信息
来源: 评论
Erratum to: Towards the abstract system theory of system science for cognitive and intelligent systems
收藏 引用
Complex & Intelligent Systems 2016年 第1期1卷 23-23页
作者: Yingxu Wang Laboratory for Computational Intelligence and Software Science International Institute of Cognitive Informatics and Cognitive Computing (ICIC) Department of Electrical and Computer Engineering Schulich School of Engineering and Hotchkiss Brain Institute University of Calgary Calgary Canada
来源: 评论
Author Correction: The challenge of mapping the human connectome based on diffusion tractography
收藏 引用
Nature communications 2019年 第1期10卷 5059页
作者: Klaus H Maier-Hein Peter F Neher Jean-Christophe Houde Marc-Alexandre Côté Eleftherios Garyfallidis Jidan Zhong Maxime Chamberland Fang-Cheng Yeh Ying-Chia Lin Qing Ji Wilburn E Reddick John O Glass David Qixiang Chen Yuanjing Feng Chengfeng Gao Ye Wu Jieyan Ma Renjie He Qiang Li Carl-Fredrik Westin Samuel Deslauriers-Gauthier J Omar Ocegueda González Michael Paquette Samuel St-Jean Gabriel Girard François Rheault Jasmeen Sidhu Chantal M W Tax Fenghua Guo Hamed Y Mesri Szabolcs Dávid Martijn Froeling Anneriet M Heemskerk Alexander Leemans Arnaud Boré Basile Pinsard Christophe Bedetti Matthieu Desrosiers Simona Brambati Julien Doyon Alessia Sarica Roberta Vasta Antonio Cerasa Aldo Quattrone Jason Yeatman Ali R Khan Wes Hodges Simon Alexander David Romascano Muhamed Barakovic Anna Auría Oscar Esteban Alia Lemkaddem Jean-Philippe Thiran H Ertan Cetingul Benjamin L Odry Boris Mailhe Mariappan S Nadar Fabrizio Pizzagalli Gautam Prasad Julio E Villalon-Reina Justin Galvis Paul M Thompson Francisco De Santiago Requejo Pedro Luque Laguna Luis Miguel Lacerda Rachel Barrett Flavio Dell'Acqua Marco Catani Laurent Petit Emmanuel Caruyer Alessandro Daducci Tim B Dyrby Tim Holland-Letz Claus C Hilgetag Bram Stieltjes Maxime Descoteaux Division of Medical Image Computing German Cancer Research Center (DKFZ) Heidelberg 69120 Germany. k.maier-hein@dkfz.de. Division of Medical Image Computing German Cancer Research Center (DKFZ) Heidelberg 69120 Germany. Sherbrooke Connectivity Imaging Lab (SCIL) Université de Sherbrooke Sherbrooke QC J1K 0A5 QC Canada. Department of Intelligent Systems Engineering School of Informatics and Computing Indiana University Bloomington IN 47408 USA. Krembil Research Institute University Health Network Toronto Canada M5G 2C4. Department of Neurological Surgery University of Pittsburgh School of Medicine Pittsburgh PA 15213 USA. IMT-Institute for Advanced Studies Lucca 55100 Italy. Department of Diagnostic Imaging St. Jude Children's Research Hospital Memphis TN 38105 USA. University of Toronto Institute of Medical Science Toronto Canada M5S 1A8. Institute of Information Processing and Automation Zhejiang University of Technology Hangzhou 310023 Zhejiang China. United Imaging Healthcare Co Shanghai 201807 China. Shanghai Advanced Research Institute Shanghai 201210 China. Laboratory of Mathematics in Imaging Harvard Medical School Boston MA 02215 USA. Center for Research in Mathematics Guanajuato 36023 Mexico. PROVIDI Lab Image Sciences Institute University Medical Center Utrecht Utrecht 3508 The Netherlands. Cardiff University Brain Research Imaging Centre School of Psychology Cardiff University Maindy Road Cardiff CF24 4HQ UK. Department of Radiology University Medical Center Utrecht Utrecht 3508 The Netherlands. Centre de recherche institut universitaire de geriatrie de Montreal (CRIUGM) Université de Montréal Montreal QC Canada H3W 1W5. Sorbonne Universités UPMC Univ Paris 06 CNRS INSERM Laboratoire d'Imagerie Biomédicale (LIB) 75013 Paris France. Center for Advanced Research in Sleep Medicine Hôpital du Sacré-Coeur de Montréal Montreal Canada H4J 1C5. Neuroimaging Unit Institute of Bioimaging and Molecular Physiology (IBFM) Nat
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
来源: 评论
Madness: A multiresolution, adaptive numerical environment for scientific simulation
Madness: A multiresolution, adaptive numerical environment f...
收藏 引用
作者: Harrison, Robert J. Beylkin, Gregory Bischoff, Florian A. Calvin, Justus A. Fann, George I. Fosso-Tande, Jacob Galindo, Diego Hammond, Jeff R. Hartman-Baker, Rebecca Hill, Judith C. Jia, Jun Kottmann, Jakob S. Ou, M-J. Yvonne Pei, Junchen Ratcliff, Laura E. Reuter, Matthew G. Richie-Halford, Adam C. Romero, Nichols A. Sekino, Hideo Shelton, William A. Sundahl, Bryan E. Thornton, W. Scott Valeev, Edward F. Vázquez-Mayagoitia, Álvaro Vence, Nicholas Yanai, Takeshi Yokoi, Yukina Stony Brook University Stony BrookNY11794 United States University of Colorado at Boulder BoulderCO80309 United States Institut für Chemie Humboldt-Universität Zu Berlin Unter den Linden 6 Berlin10099 Germany Department of Chemistry Virginia Tech. BlacksburgVA24061 United States Oak Ridge National Laboratory Oak RidgeTN37831 United States Department of Chemistry and Biochemistry Florida State University TallahasseeFL32306 United States Parallel Computing Lab Intel Corporation PortlandOR97219 United States National Energy Research Scientific Computing Center Lawrence Berkeley National Laboratory BerkeleyCA94720 United States LinkedIn Mountain ViewCA94043 United States Department of Mathematical Sciences University of Delaware NewarkDE19716 United States State Key Laboratory of Nuclear Physics and Technology School of Physics Peking University Beijing100871 China Argonne Leadership Computing Facility Argonne National Laboratory ArgonneIL60439 United States Department of Physics University of Washington SeattleWA98195 United States Computer Science and Engineering Toyohashi University of Technology ToyohashiAichi441-8580 Japan Louisiana State University Baton RougeLA70803 United States Department of Physics LaSierra University RiversideCA92505 United States Theoretical and Computational Molecular Science Institute for Molecular Science OkazakiAichi444-8585 Japan
MADNESS (multiresolution adaptive numerical environment for scientific simulation) is a high-level software environment for solving integral and differential equations in many dimensions that uses adaptive and fast ha... 详细信息
来源: 评论
Dimensionless ratios: Characteristics of quantum liquids and their phase transitions
收藏 引用
Physical Review B 2016年 第19期94卷 195129-195129页
作者: Yi-Cong Yu Yang-Yang Chen Hai-Qing Lin Rudolf A. Römer Xi-Wen Guan State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics Wuhan Institute of Physics and Mathematics Chinese Academy of Sciences Wuhan 430071 China Beijing Computational Science Research Center Beijing 100094 China Department of Physics and Centre for Scientific Computing University of Warwick Coventry CV4 7AL United Kingdom Center for Cold Atom Physics Chinese Academy of Sciences Wuhan 430071 China Department of Theoretical Physics Research School of Physics and Engineering Australian National University Canberra ACT 0200 Australia
Dimensionless ratios of physical properties can characterize low-temperature phases in a wide variety of materials. As such, the Wilson ratio (WR), the Kadowaki-Woods ratio, and the Wiedemann-Franz law capture essenti... 详细信息
来源: 评论
Historical typewritten document recognition using minimal user interaction  15
Historical typewritten document recognition using minimal us...
收藏 引用
3rd International Workshop on Historical Document Imaging and Processing, HIP 2015
作者: Retsinas, George Gatos, Basilis Antonacopoulos, Apostolos Louloudis, Georgios Stamatopoulos, Nikolaos Computational Intelligence Laboratory Institute of Informatics and Telecommunications National Center for Scientific Research Demokritos AthensGR-15310 Greece School of Electrical and Computer Engineering National Technical University of Athens AthensGR-15773 Greece Research Lab School of Computing Science and Engineering University of Salford Greater ManchesterM5 4WT United Kingdom
Recognition of low-quality historical typewritten documents can still be considered as a challenging and difficult task due to several issues i.e. the existence of faint and degraded characters, stains, tears, punch h... 详细信息
来源: 评论
Saliency Detection via Nonconvex Regularization Based Matrix Decomposition
Saliency Detection via Nonconvex Regularization Based Matrix...
收藏 引用
International Conference on computational Intelligence and Security
作者: Zhixiang He Xiaoli Sun Xiujun Zhang Chen Xu College of Mathematics and Computational Science Shenzhen University Shenzhen China College of Information and Engineering Shenzhen University Shenzhen China Institute of Intelligent Computing Science Shenzhen University Shenzhen China
In this paper, a nonconvex regularization based matrix decomposition model (NRMD) is proposed. In NRMD, the non-salient regions are regarded as a low rank part, and the salient regions are viewed as a sparse part. Dif... 详细信息
来源: 评论